Plant conservation urgently needs a concept that would unify different aspects of population viability as parts of conservation methodology. Such unification is especially lacking for ex situ conservation. We introduce a novel conservation approach in which ex situ collections maintained in natural or semi-natural environment and preserving both neutral and adaptive genetic diversity are a part of a complementary ex situ-in situ conservation strategy. Our approach is the first that explicitly takes into account ecologically significant (i.e. adaptive) variation of plants in both ex situ and in situ conservation actions. Using this approach we provide detailed guidelines for (1) representative sampling of the populations; (2) collection maintenance; and (3) utilization for in situ actions.
Summary1. Despite being expensive, complicated and less successful than the conservation of primary habitat, translocation is rapidly gaining importance as a conservation approach due to accelerated loss of natural environment. Finding the optimal abiotic and biotic conditions needed for successful translocation of plants can be difficult for species with limited information on prior distribution. Unfortunately, this is often the case with endangered plant species, including those urgently needing action.2. We present a method of evaluating the relative importance of multiple environmental parameters in translocation success. This method is based on the application of variation partitioning in canonical ordination and it allows usage of not only multiple independent biotic and abiotic variables, but also multiple dependent variables for fitness estimates. 3. In this study, six soil parameters together with the abundance of 61 plant species and their total biomass were used to explain the variation in translocation success of Iris atrofusca plants among 22 microsites. The relative importance of each of the three factors was estimated using ordination techniques. 4. Soil characteristics and total biomass of other plants did not significantly affect the performance of translocated irises, but the species composition of the surrounding vegetation did have a significant effect. The abundance of relatively rare species was closely correlated with iris performance. It is likely that these species do not affect the irises directly but instead represent environmental conditions not measured in this study, which are necessary for the survival of irises. 5. Synthesis and applications. Variation partitioning appears to be a highly promising method for planning the translocation of plants and evaluating success due to its ability to estimate the unique contribution of each of two or more sets of environmental factors. It can be used to monitor success, and to identify the key contributory factors, in experimental translocations preceding actual introduction of plants in conservation programmes.
We introduce a novel approach for conservation of endangered plant species in which ex situ collections maintained in natural or semi-natural environment are a part of a complementary ex situin situ conservation strategy. We provide detailed guidelines for 1) representative sampling of the populations; 2) collection maintenance; and 3) utilization for in situ actions. Our approach is the fi rst that explicitly takes into account ecologically signifi cant (i.e. adaptive) variation of plants in both ex situ and in situ conservation actions. We propose that an important part of the conservation strategy is preserving both neutral and adaptive genetic diversity through a quasi in situ conservation approach. Finally, we demonstrate this approach using a critically endangered plant species, Iris atrofusca from the northern Negev, Israel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.