A survey of existing methods for stopping active learning (AL) reveals the needs for methods that are: more widely applicable; more aggressive in saving annotations; and more stable across changing datasets. A new method for stopping AL based on stabilizing predictions is presented that addresses these needs. Furthermore, stopping methods are required to handle a broad range of different annotation/performance tradeoff valuations. Despite this, the existing body of work is dominated by conservative methods with little (if any) attention paid to providing users with control over the behavior of stopping methods. The proposed method is shown to fill a gap in the level of aggressiveness available for stopping AL and supports providing users with control over stopping behavior.
This paper describes the resource-and system-building efforts of an eight-week Johns Hopkins University Human Language Technology Center of Excellence Summer Camp for Applied Language Exploration (SCALE-2009) on Semantically-Informed Machine Translation (SIMT). We describe a new modality/negation (MN) annotation scheme, the creation of a (publicly available) MN lexicon, and two automated MN taggers that we built using the annotation scheme and lexicon. Our annotation scheme isolates three components of modality and negation: a trigger (a word that conveys modality or negation), a target (an action associated with modality or negation) and a holder (an experiencer of modality). We describe how our MN lexicon was semi-automatically produced and we demonstrate that a structure-based MN tagger results in precision around 86% (depending on genre) for tagging of a standard LDC data set.We apply our MN annotation scheme to statistical machine translation using a syntactic framework that supports the inclusion of semantic annotations. Syntactic tags enriched with semantic annotations are assigned to parse trees in the target-language training texts through a process of tree grafting. While the focus of our work is modality and negation, the tree grafting procedure is general and supports other types of semantic information. We exploit this capability by including named entities, produced by a pre-existing tagger, in addition to the MN elements * Fort Meade, MD, Computational LinguisticsVolume X, Number Y produced by the taggers described in this paper. The resulting system significantly outperformed a linguistically naïve baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English test set. This finding supports the hypothesis that both syntactic and semantic information can improve translation quality.
Homogenous populations of cells make up individual tissues, yet how organisms achieve such homogeneity is unknown. Le et al. use the C. elegans intestine to reveal that an initiator of RNA silencing is segregated unequally between cells. Suppression of this inequality during early development achieves tissue homogeneity.
During active learning, an effective stopping method allows users to limit the number of annotations, which is cost effective. In this paper, a new stopping method called Predicted Change of F Measure will be introduced that attempts to provide the users an estimate of how much performance of the model is changing at each iteration. This stopping method can be applied with any base learner. This method is useful for reducing the data annotation bottleneck encountered when building text classification systems.
Translation Memory (TM) systems are one of the most widely used translation technologies. An important part of TM systems is the matching algorithm that determines what translations get retrieved from the bank of available translations to assist the human translator. Although detailed accounts of the matching algorithms used in commercial systems can't be found in the literature, it is widely believed that edit distance algorithms are used. This paper investigates and evaluates the use of several matching algorithms, including the edit distance algorithm that is believed to be at the heart of most modern commercial TM systems. This paper presents results showing how well various matching algorithms correlate with human judgments of helpfulness (collected via crowdsourcing with Amazon's Mechanical Turk). A new algorithm based on weighted n-gram precision that can be adjusted for translator length preferences consistently returns translations judged to be most helpful by translators for multiple domains and language pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.