Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.
The quantum dimer model on the square lattice is equivalent to a U (1) gauge theory. Quantum Monte Carlo calculations reveal that, for values of the Rokhsar-Kivelson (RK) coupling λ < 1, the theory exists in a confining columnar phase. The interfaces separating distinct columnar phases display plaquette order, which, however, is not realized as a bulk phase. Static "electric" charges are confined by flux tubes that consist of multiple strands, each carrying a fractionalized flux 1 4 . A soft pseudo-Goldstone mode emerges around λ ≈ 0, long before one reaches the RK point at λ = 1.
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition -at least up to moderate vortex suppression. Thus our study underscores the robustness of universality, which persists even when basic principles of classical physics are violated. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. In the massless phase, the BKT value of the critical exponent η c is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU (3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD.We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3 2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.
We study θ-vacua in the 2-d lattice O(3) model using the standard action and an optimized constraint action with very small cut-off effects, combined with the geometric topological charge. Remarkably, dislocation lattice artifacts do not spoil the non-trivial continuum limit at θ = 0, and there are different continuum theories for each value 0 ≤ θ ≤ π. A very precise Monte Carlo study of the step scaling function indirectly confirms the exact S-matrix of the 2-d O(3) model at θ = π.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.