In this article we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by developing and benchmarking domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. All of the software, including the benchmark agents, is publicly available.
Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker, the quintessential game of imperfect information, is a long-standing challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect-information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated, with statistical significance, professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce strategies that are more difficult to exploit than prior approaches.
Poker is a family of games that exhibit imperfect information, where players do not have full knowledge of past events. Whereas many perfect information games have been solved (e.g., Connect Four and checkers), no nontrivial imperfect information game played competitively by humans has previously been solved. Here, we announce that heads-up limit Texas hold'em is now essentially weakly solved. Furthermore, this computation formally proves the common wisdom that the dealer in the game holds a substantial advantage. This result was enabled by a new algorithm, CFR + , which is capable of solving extensive-form games orders of magnitude larger than previously possible.Games have been intertwined with the earliest developments in computation, game theory, and artificial intelligence (AI). At the very conception of computing, Babbage had detailed plans for an "automaton" capable of playing tic-tac-toe and dreamt of his Analytical Engine playing chess (1). Both Turing (2) and Shannon (3) -on paper and in hardware, respectively -developed programs to play chess as a means of validating early ideas in computation and AI. For more than a half century, games have continued to act as testbeds for new ideas and the resulting successes have marked important milestones in the progress of AI. Examples include the checkers-playing computer program Chinook becoming the first to win a world championship title against humans (4), Deep Blue defeating Kasparov in chess (5), and Watson defeating Jennings and Rutter on Jeopardy! (6). However, defeating top human players is not the same as "solving" a game -that is, computing a game-theoretically optimal solution that is incapable of losing against any opponent in a fair game. Notable milestones in the advancement of AI have been achieved through solving games such as Connect Four (7) and checkers (8).Every nontrivial game played competitively by humans that has been solved to date is a perfect-information game (9). In perfect-information games, all players are informed of everything that has occurred in the game before making a decision. Chess, checkers, and backgammon are examples of perfect-information games. In imperfect-information games, players do 1
The Arcade Learning Environment (ALE) is an evaluation platform that poses the challenge of building AI agents with general competency across dozens of Atari 2600 games. It supports a variety of different problem settings and it has been receiving increasing attention from the scientific community, leading to some high-profile success stories such as the much publicized Deep Q-Networks (DQN). In this article we take a big picture look at how the ALE is being used by the research community. We show how diverse the evaluation methodologies in the ALE have become with time, and highlight some key concerns when evaluating agents in the ALE. We use this discussion to present some methodological best practices and provide new benchmark results using these best practices. To further the progress in the field, we introduce a new version of the ALE that supports multiple game modes and provides a form of stochasticity we call sticky actions. We conclude this big picture look by revisiting challenges posed when the ALE was introduced, summarizing the state-of-the-art in various problems and highlighting problems that remain open.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.