The continuously growing amount of renewable sources starts compromising the stability of electrical grids. Contradictory to fossil fuel power plants, energy production of wind and photovoltaic (PV) energy is fluctuating. Although predictions have significantly improved, an outage of multi-MW offshore wind farms poses a challenging problem. One solution could be the integration of storage systems in the grid. After a short overview, this paper focuses on two exemplary battery storage systems, including the required power electronics. The grid integration, as well as the optimal usage of volatile energy reserves, is presented for a 5-kW PV system for home application, as well as for a 100-MW mediumvoltage system, intended for wind farm usage. The efficiency and cost of topologies are investigated as a key parameter for large-scale integration of renewable power at medium-and low-voltage.
With increased wind power penetration, grid codes of system operators require low voltage ride through (LVRT) capability for wind turbines (WT). This paper describes a full power test bench, designed to evaluate the functionality of grid connected converter in nominal operating mode and in case of LVRT. To verify the LVRT capability an inverter based voltage sag generator (VSG) is developed which emulates grid failures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.