In continuous flow biocatalysis, chemical transformations can occur under milder, greener, more scalable, and safer conditions than conventional organic synthesis. However, the method typically involves extensive screening to optimize each enzyme's immobilization on its solid support material. The task of weighing solids for large numbers of experiments poses a bottleneck for screening enzyme immobilization conditions. For example, screening conditions often require multiple replicates exploring different support chemistries, buffer compositions, and temperatures. Thus, we report 3D-printed labware designed to measure and handle solids in multichannel format and expedite screening of enzyme immobilization conditions. To demonstrate the generality of these advances, alkaline phosphatase, glucose dehydrogenase, and laccase were screened for immobilization efficiency on seven resins. The results illustrate the requirements for optimization of each enzyme's loading and resin choice for optimal catalytic performance. Here, 3D-printed labware can decrease the requirements for an experimentalist's time by >95%. The approach to rapid optimization of enzyme immobilization is applicable to any enzyme and many solid support resins. Furthermore, the reported devices deliver precise and accurate aliquots of essentially any granular solid material.
GPR55, a G protein-coupled receptor, is an attractive target to alleviate inflammatory and neuropathic pain and treat osteoporosis and cancer. Identifying a potent and selective ligand will aid to further establish the specific physiological roles and pharmacology of the receptor. Towards this goal, a targeted library of 22 compounds was synthesized in a modular fashion to obtain structure-activity relationship information. The general route consisted of coupling a variety of p-aminophenyl sulfonamides to isothiocyanates to form acylthioureas. For the synthesis of a known naphthyl ethyl alcohol motif, route modification led to a shorter and more efficient process. The 22 analogues were analyzed for their ability to serve as agonists at GPR55 and valuable information for both ends of the molecule was ascertained.
Clean pump oil is critical to the
performance and longevity of
oil-sealed vacuum pumps. Cold traps charged with cryogens can protect
pump oil from solvent contamination but are subject to operator error.
Notably, cold traps with evaporated or warmed cryogens do not protect
the vacuum pump. Here, we report an open source device to automatically
protect oil-sealed vacuum pumps from cold trap warming and facilitate
the daily maintenance of cold traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.