In many industrial fermentation processes, the Saccharomyces cerevisiae yeast should ideally meet two partially conflicting demands. During fermentation, a high suspended yeast count is required to maintain a satisfactory rate of fermentation, while at completion, efficient settling is desired to enhance product clarification and recovery. In most fermentation industries, currently used starter cultures do not satisfy this ideal, probably because nonflocculent yeast strains were selected to avoid fermentation problems. In this paper, we assess molecular strategies to optimize the flocculation behavior of S. cerevisiae. For this purpose, the chromosomal copies of three dominant flocculation genes, FLO1, FLO5, and FLO11, of the haploid nonflocculent, noninvasive, and non-flor-forming S. cerevisiae FY23 strain were placed under the transcriptional control of the promoters of the ADH2 and HSP30 genes. All six promoter-gene combinations resulted in specific flocculation behaviors in terms of timing and intensity. The strategy resulted in stable expression patterns providing a platform for the direct comparison and assessment of the specific impact of the expression of individual dominant FLO genes with regard to cell wall characteristics, such as hydrophobicity, biofilm formation, and substrate adhesion properties. The data also clearly demonstrate that the flocculation behavior of yeast strains can be tightly controlled and fine-tuned to satisfy specific industrial requirements.
The ability of many microorganisms to modify adhesion-related properties of their cell surface is of importance for many processes, including substrate adhesion, cell-cell adhesion, invasive growth, pathogenic behaviour and biofilm formation. In the yeast Saccharomyces cerevisiae, a group of structurally related, cell-wall associated proteins encoded by the FLO gene family are directly responsible for many of the cellular adhesion phenotypes displayed by this organism. Previous research has suggested that the differential transcription of FLO genes determines specific adhesion phenotypes. However, the transcriptional regulation of most FLO genes remains poorly understood. Here we show that the transcriptional activator Mss11p, which has previously been shown to be involved in the regulation of starch degradation, the formation of pseudohyphae and haploid invasive growth, also acts as a strong inducer of flocculation. The data indicate that Mss11p induces flocculation together with Flo8p, and that FLO1 is the dominant target gene of the two factors in this process. The deletion of MSS11 leads to a non-flocculent phenotype, and specific domains of Mss11p that are critical for the induction of flocculation are identified. The data clearly show that several essential transcription factors are shared by at least two flocculation genes that control different adhesion phenotypes.
SummaryIn Saccharomyces cerevisiae , the cell surface protein, Muc1p, was shown to be critical for invasive growth and pseudohyphal differentiation. The transcription of MUC1 and of the co-regulated STA2 glucoamylase gene is controlled by the interplay of a multitude of regulators, including Ste12p, Tec1p, Flo8p, Msn1p and Mss11p. Genetic analysis suggests that Mss11p plays an essential role in this regulatory process and that it functions at the convergence of at least two signalling cascades, the filamentous growth MAPK cascade and the cAMP-PKA pathway. Despite this central role in the control of filamentous growth and starch metabolism, the exact molecular function of Mss11p is unknown. We subjected Mss11p to a detailed molecular analysis and report here on its role in transcriptional regulation, as well as on the identification of specific domains required to confer transcriptional activation in response to nutritional signals. We show that Mss11p contains two independent transactivation domains, one of which is a highly conserved sequence that is found in several proteins with unidentified function in mammalian and invertebrate organisms. We also identify conserved amino acids that are required for the activation function.
Adhesion properties of microorganisms are crucial for many essential biological processes such as sexual reproduction, tissue or substrate invasion, biofilm formation and others. Most, if not all microbial adhesion phenotypes are controlled by factors such as nutrient availability or the presence of pheromones. One particular form of controlled cellular adhesion that occurs in liquid environments is a process of asexual aggregation of cells which is also referred to as flocculation. This process has been the subject of significant scientific and biotechnological interest because of its relevance for many industrial fermentation processes. Specifically adjusted flocculation properties of industrial microorganisms could indeed lead to significant improvements in the processing of biotechnological fermentation products such as foods, biofuels and industrially produced peptides. This review briefly summarises our current scientific knowledge on the regulation of flocculation-related phenotypes, their importance for different biotechnological industries, and possible future applications for microorganisms with improved flocculation properties.
Most commercial yeast strains are nonflocculent. However, controlled flocculation phenotypes could provide significant benefits to many fermentation-based industries. In nonflocculent laboratory strains, it has been demonstrated that it is possible to adjust flocculation and adhesion phenotypes to desired specifications by altering expression of the otherwise silent but dominant flocculation (FLO) genes. However, FLO genes are characterized by high allele heterogeneity and are subjected to epigenetic regulation. Extrapolation of data obtained in laboratory strains to industrial strains may therefore not always be applicable. Here, we assess the adhesion phenotypes that are associated with the expression of a chromosomal copy of the FLO1, FLO5, or FLO11 open reading frame in two nonflocculent commercial wine yeast strains, BM45 and VIN13. The chromosomal promoters of these genes were replaced with stationary phase-inducible promoters of the HSP30 and ADH2 genes. Under standard laboratory and wine making conditions, the strategy resulted in expected and stable expression patterns of these genes in both strains. However, the specific impact of the expression of individual FLO genes showed significant differences between the two wine strains and with corresponding phenotypes in laboratory strains. The data suggest that optimization of the flocculation pattern of individual commercial strains will have to be based on a strain-by-strain approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.