Analysts who use predictive analytics methods need actionable evidence to support their models and simulations. Commonly, this evidence is distilled from large data sets with significant amount of culling and searching through a variety of sources including traditional and social media. The time/cost effectiveness and quality of the evidence marshaling process can be greatly enhanced by combining component technologies that support directed content harvesting, automated semantic annotation, and content analysis within a collaborative environment, with a functional interface to models and simulations. Existing evidence extraction tools provide some, but not all, the critical components that would empower such an integrated knowledge management environment. This paper describes a novel evidence marshaling solution that significantly advances the state of the art. Its embodiment, the Knowledge Encapsulation Framework (KEF), offers a suite of semi-automated and configurable content harvesting, vetting, annotation and analysis capabilities within a wiki-enabled and user-friendly visual interface that supports collaborative work across distributed teams of analysts. After a summarization of related work, our motivation, and the technical implementation of KEF, we will explore the model for using KEF and results of our research.
Modern scientific enterprises are inherently knowledge-intensive. In general, scientific studies in domains such as geosciences, climate, and biology require the acquisition and manipulation of large amounts of experimental and field data in order to create inputs for large-scale computational simulations. The results of these simulations must then be analyzed, leading to refinements of inputs and models and additional simulations. Further, these results must be managed and archived to provide justifications for regulatory decisions and publications that are based on these models. In this paper we introduce our Velo framework that is designed as a reusable, domain independent knowledge management infrastructure for modeling and simulation. Velo leverages, integrates, and extends open source collaborative and content management technologies to create a scalable and flexible core platform that can be tailored to specific scientific domains. We describe the architecture of Velo for managing and associating the various types of data that are used and created in modeling and simulation projects, as well as the framework for integrating domain-specific tools. To demonstrate a realization of Velo, we describe the Geologic Sequestration Software Suite (GS 3 ) that has been developed to support geologic sequestration modeling. This provides a concrete example of the inherent extensibility and utility of our approach.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.