Flash furnace electrostatic precipitator dust (FF-ESP dust) is a recycle stream in some primary copper production facilities. This dust contains high amounts of copper. In some cases, the FF-ESP dust contains elevated levels of bismuth and arsenic, both of which cause problems during the electrorefining stages of copper production. Because of this, methods for separation of copper from bismuth and arsenic in FF-ESP dust are necessary. Hydrometallurgical leaching using a number of lixiviants, including sulfuric acid, sulfurous acid, sodium hydroxide, and water, were explored. Pourbaix diagrams of copper, bismuth, and arsenic were used to determine sets of conditions which would thermodynamically separate copper from bismuth and arsenic. The data indicate that water provides the best overall separation between copper and both bismuth and arsenic. Sodium hydroxide provided a separation between copper and arsenic. Sulfurous acid provided a separation between copper and bismuth. Sulfuric acid did not provide any separations between copper and bismuth or copper and arsenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.