In this paper, a scheme is proposed for the treatment of arsenic-containing lead slime by the combination of acid pressure oxidation leaching and forming scorodite. On the basis of thermodynamic calculations, the effects of six factors including acid concentration, oxygen partial pressure (pO2), liquid to solid ratio (L/S), agitating speed, leaching time and temperature for the removal of arsenic were studied in an acid pressure oxidation leaching process, then the optimum leaching conditions were established: L/S of 10 mL/g, leaching time of 2.5 h, pO2 of 2.0 MPa, leaching temperature of 170 °C, acid concentration of 100 g/L and stirring speed of 300 r/min. Under the optimal conditions, the leaching rate of arsenic from lead slime reached 99.10% and the arsenic content of the leaching residue was about 0.80%. After a decontamination procedure, the total arsenic concentration in the acid solution obtained from leaching experiments was 37.18 g/L, and the initial pH was 0.50. Finally, as high as 98.5% of arsenic extracted from the lead slime was stabilized in the form of scorodite (FeAsO4·2H2O) by the precipitation process under the following conditions: initial pH value of 1.0, Fe(II)/As molar ratio of 1.3, pO2 of 2.5 MPa, temperature of 160 °C and precipitation time of 2.0 h.