The Robot Operating System (ROS) is a set of software libraries and tools used to build robotic systems. ROS is known for a distributed and modular design. Given a model of the environment, task planning is concerned with the assembly of actions into a structure that is predicted to achieve goals. This can be done in a way that minimises costs, such as time or energy. Task planning is vital in directing the actions of a robotic agent in domains where a causal chain could lock the agent into a dead-end state. Moreover, planning can be used in less constrained domains to provide more intelligent behaviour. This paper describes the ROSP LAN framework, an architecture for embedding task planning into ROS systems. We provide a description of the architecture and a case study in autonomous robotics. Our case study involves autonomous underwater vehicles in scenarios that demonstrate the flexibility and robustness of our approach.
In many usage scenarios of AI Planning technology, users will want not just a plan π but an explanation of the space of possible plans, justifying π. In particular, in oversubscription planning where not all goals can be achieved, users may ask why a conjunction A of goals is not achieved by π. We propose to answer this kind of question with the goal conjunctions B excluded by A, i. e., that could not be achieved if A were to be enforced. We formalize this approach in terms of plan-property dependencies, where plan properties are propositional formulas over the goals achieved by a plan, and dependencies are entailment relations in plan space. We focus on entailment relations of the form ∧g∈A g ⇒ ⌝ ∧g∈B g, and devise analysis techniques globally identifying all such relations, or locally identifying the implications of a single given plan property (user question) ∧g∈A g. We show how, via compilation, one can analyze dependencies between a richer form of plan properties, specifying formulas over action subsets touched by the plan. We run comprehensive experiments on adapted IPC benchmarks, and find that the suggested analyses are reasonably feasible at the global level, and become significantly more effective at the local level.
Underwater installations require regular inspection and maintenance. We are exploring the idea of performing these tasks using an autonomous underwater vehicle, achieving persistent autonomous behaviour in order to avoid the need for frequent human intervention. In this paper we consider one aspect of this problem, which is the construction of a suitable plan for a single inspection tour. In particular we generate a temporal plan that optimises the time taken to complete the inspection mission. We report on physical trials with the system at the Diver and ROV driver Training Center in Fort William, Scotland, discussing some of the lessons learned.
One of the original motivations for domain-independent planning was to generate plans that would then be executed in the environment. However, most existing planners ignore the passage of time during planning. While this can work well when absolute time does not play a role, this approach can lead to plans failing when there are external timing constraints, such as deadlines. In this paper, we describe a new approach for time-sensitive temporal planning. Our planner is aware of the fact that plan execution will start only once planning finishes, and incorporates this information into its decision making, in order to focus the search on branches that are more likely to lead to plans that will be feasible when the planner finishes.
Intervention autonomous underwater vehicles (I-AUVs) have the potential to open new avenues for the maintenance and monitoring of offshore subsea facilities in a cost-effective way. However, this requires challenging intervention operations to be carried out persistently, thus minimizing human supervision and ensuring a reliable vehicle behaviour under unexpected perturbances and failures. This paper describes a system to perform autonomous intervention—in particular valve-turning—using the concept of persistent autonomy. To achieve this goal, we build a framework that integrates different disciplines, involving mechatronics, localization, control, machine learning and planning techniques, bearing in mind robustness in the implementation of all of them. We present experiments in a water tank, conducted with Girona 500 I-AUV in the context of a multiple intervention mission. Results show how the vehicle sets several valve panel configurations throughout the experiment while handling different errors, either spontaneous or induced. Finally, we report the insights gained from our experience and we discuss the main aspects that must be matured and refined in order to promote the future development of intervention autonomous vehicles that can operate, persistently, in subsea facilitiesThis work has been supported by the FP7-ICT-2011-7 project PANDORA-Persistent Autonomy through Learning, Adaptation, Observation and Re-planning (Ref. 288273) funded by the European Commissio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.