RasGRP1 and Sos are two Ras-guanyl-nucleotide exchange factors that link TCR signal transduction to Ras and MAPK activation. Recent studies demonstrate positive selection of developing thymocytes is crucially dependent on RasGRP1, whereas negative selection of autoreactive thymocytes appears to be RasGRP1 independent. However, the role of RasGRP1 in T regulatory (Treg) cell development and function is unknown. In this study, we characterized the development and function of CD4+CD25+Foxp3+ and CD8+CD44highCD122+ Treg lineages in RasGRP1−/− mice. Despite impaired CD4 Treg cell development in the thymus, the periphery of RasGRP1−/− mice contained significantly increased frequencies of CD4+Foxp3+ Treg cells that possessed a more activated cell surface phenotype. Furthermore, on a per cell basis, CD4+Foxp3+ Treg cells from mutant mice are more suppressive than their wild-type counterparts. Our data also suggest that the lymphopenic environment in the mutant mice plays a dominant role of favored peripheral development of CD4 Treg cells. These studies suggest that whereas RasGRP1 is crucial for the intrathymic development of CD4 Treg cells, it is not required for their peripheral expansion and function. By contrast to CD4+CD25+Foxp3+ T cells, intrathymic development of CD8+CD44highCD122+ Treg cells is unaffected by the RasGRP1−/− mutation. Moreover, RasGRP1−/− mice contained greater numbers of CD8+CD44highCD122+ T cells in the spleen, relative to wild-type mice. Activated CD8 Treg cells from RasGRP1−/− mice retained their ability to synthesize IL-10 and suppress the proliferation of wild-type CD8+CD122− T cells, albeit at a much lower efficiency than wild-type CD8 Treg cells.
TNF receptor-2 (TNFR2) plays a critical role in promoting the activation and survival of naive T cells during the primary response. Interestingly, anti-CD3 plus IL-2 activated TNFR2−/− CD8 T cells are highly resistant to activation-induced cell death (AICD), which correlates with high expression levels of prosurvival molecules such as Bcl-2, survivin, and CD127 (IL-7Rα). We determined whether the resistance of activated TNFR2−/− CD8 T cells to AICD contributes to more effective protection against tumor cell growth. We found that during a primary tumor challenge, despite initial inferiority in controlling tumor cell growth, TNFR2−/− mice were able to more effectively control tumor burden over time compared with wild-type (WT) mice. Furthermore, vaccination of TNFR2−/− mice with recombinant Listeria monocytogenes that express OVA confers better protection against the growth of OVA-expressing E.G7 tumor cells relative to similarly vaccinated WT mice. The enhanced protection against tumor cell growth was not due to more effective activation of OVA-specific memory CD8 T cells in vaccinated TNFR2−/− mice. In vitro studies indicate that optimally activated OVA-specific TNFR2−/− CD8 T cells proliferated to the same extent and possess similar cytotoxicity against E.G7 tumor cells as WT CD8 T cells. However, relative to WT cells, activated OVA-specific TNFR2−/− CD8 T cells were highly resistant to AICD. Thus, the enhanced protection against E.G7 in TNFR2−/− mice is likely due to the recruitment and activation of OVA-specific memory TNFR2−/− CD8 T cells and their prolonged survival at the tumor site.
Self-specific CD8 T cells, which are selected by high-affinity interactions with self-Ags, develop into a lineage distinct from conventional CD8 T cells. We have previously shown that these self-specific cells acquire phenotypic and functional similarities to cells of the innate immune system including the expression of functional receptors associated with NK cells. In this study, we show that these self-specific cells have the ability to produce large amounts of IFN-γ in response to infection with Listeria monocytogenes in a bystander fashion. The rapid production of IFN-γ is associated with a dramatic reduction in the number of viable bacteria at the peak of infection. Self-specific CD8 T cells provide only marginal innate protection in the absence of self-Ag; however, the presence of self-Ag dramatically increases their protective ability. Exposure to self-Ag is necessary for the maintenance of the memory phenotype and responsiveness to inflammatory cytokines such as IL-15. Significantly, self-specific CD8 T cells are also more efficient in the production of IFN-γ and TNF-α, thus providing more cytokine-dependent protection against bacterial infection when compared with NK cells. These findings illustrate that self-reactive CD8 T cells can play an important innate function in the early defense against bacterial infection.
Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1−/− 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.
H2-M3-restricted CD8+ T cells provide early protection against bacterial infections. In this study, we demonstrate that activated H2-M3-restricted T cells provide early signals for efficient CD4+ T cell priming. C57BL/6 mice immunized with dendritic cells coated with the MHC class II-restricted listeriolysin O peptide LLO190–201 (LLO) generated CD4+ T cells capable of responding to Listeria monocytogenes (LM) infection. Inclusion of a H2-M3-restricted formylated peptide fMIGWII (fMIG), but not MHC class Ia-restricted peptides, during immunization with LLO significantly increased IFN-γ-producing CD4+ T cell numbers, which was associated with increased protection against LM infection. Studies with a CD4+ T cell-depleting mAb indicate that the reduction in bacterial load in fMIG plus LLO immunized mice is likely due to augmented numbers of LLO-specific CD4+ T cells, generated with the help of H2-M3-restricted CD8+ T cells. We also found that augmentation of LLO-specific CD4+ T lymphocytes with H2-M3-restricted T cells requires presentation of LLO and fMIG by the same dendritic cells. Interestingly, the augmented CD4+ T cell response generated with fMIG also increased primary LM-specific responses by MHC class Ia-restricted CD8 T cells. Coimmunization with LLO and fMIG also increases the number of memory Ag-specific CD4+ T cells. We also demonstrate that CD8 T cells restricted to another MHC class Ib molecule, Qa-1, whose human equivalent is HLA-E, are also able to enhance Ag-specific CD4+ T cell responses. These results reveal a novel function for H2-M3- and Qa-1-restricted T cells; provision of help to CD4+ Th cells during the primary response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.