Detailed film-cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film-cooling effectiveness is coupled with varying blowing ratio (M=0.25–2.0), freestream turbulence intensity (Tu=1–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α=10 deg), or simple angle, laidback, fanshaped holes (α=10 deg and γ=10 deg). In all three cases, the film-cooling holes are angled at θ=35 deg from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film-cooling geometry. The detailed film-cooling effectiveness distributions, for cylindrical holes, clearly show that the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR=1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR=1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film-cooling holes, the greatest film-cooling effectiveness is obtained at the lower density ratio (DR=1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.
An experimental investigation of film cooling jet structure using two-dimensional particle image velocimetry (PIV) has been completed for cylindrical, simple angle (θ=35 deg) film cooling holes. The PIV measurements are coupled with detailed film cooling effectiveness distributions on the flat plate obtained using a steady state, pressure sensitive paint (PSP) technique. Both the flow and surface measurements were performed in a low speed wind tunnel where the freestream turbulence intensity was varied from 1.2% to 12.5%. With this traditional film cooling configuration, the blowing ratio was varied from 0.5 to 1.5 to compare the jet structure of relatively low and high momentum cooling flows. Velocity maps of the coolant flow (in the streamwise direction) are obtained on three planes spanning a single hole: centerline, 0.25D, and 0.5D (outer edge of the film cooling hole). From the seeded jets, time averaged, mean velocity distributions of the film cooling jets are obtained near the cooled surface. In addition, turbulent fluctuations are obtained for each flow condition. Combining the detailed flow field measurements obtained using PIV (both instantaneous and time averaged) with detailed film cooling effectiveness distributions on the surface (PSP) provides a more complete view of the coolant jet-mainstream flow interaction. Near the edge of the film cooling holes, the turbulent mixing increases, and as a result the film cooling effectiveness decreases. Furthermore, the PIV measurements show the increased mixing of the coolant jet with the mainstream at the elevated freestream turbulence level resulting in a reduction in the jet to effectively protect the film cooled surface.
The reactivity of titanium and boron mixtures under detonation initiation in air is examined experimentally in a constant volume blast chamber. Fine powder mixtures and mechanical alloys are pressed into compacts and are ignited using an HMX‐based explosive initiated with both single point and triple point detonator configurations. Transient pressure measurements, optical imaging, pyrometry, and spectroscopy are performed to analyse the reaction. All mixtures show no significant enhancement in the primary blast wave strength, indicating a relatively slow reaction. However, measurable increases in overpressure are generated due to Ti and/or B reaction. It is found that Ti/2B mechanical alloys significantly outperform blended powder mixtures in generating larger overpressures, yielding energy releases of 45 % and 20 %, respectively. Triple point initiation of the mechanical alloys further enhances the overpressure generation when compared to single point initiation of the alloys, increasing the energy yield. The overpressure of blended powders is also exceeded by a TiB2 compound, suggesting that the intermetallic reaction may be less critical than previously thought. Detonation merging at the plane of interaction between explosive and Ti/2B material is shown to significantly enhance conversion. Spectroscopic measurements show the appearance of BO2 emission relatively late after detonation in the most reactive Ti/2B reactive mechanical alloys, and it appears strongest in system that show greatest reactivity.
An experimental investigation of film cooling jet structure using two-dimensional, particle image velocimetry (PIV) has been completed for cylindrical, simple angle (θ = 35°) film cooling holes. The PIV measurements are coupled with detailed film cooling effectiveness distributions on the flat plate obtained using a steady state, pressure sensitive paint (PSP) technique. Both the flow and surface measurements were performed in a low speed wind tunnel where the freestream turbulence intensity was varied from 1.2% to 12.5%. With this traditional film cooling configuration, the blowing ratio was varied from 0.5–1.5 to compare the jet structure of relatively low and high momentum cooling flows. Velocity maps of the coolant flow (in the streamwise direction) are obtained on three planes spanning a single hole: centerline, 0.25D, and 0.5D (outer edge of the film cooling hole). From the seeded jets, time averaged, mean velocity distributions of the film cooling jets are obtained near the cooled surface. In addition, turbulent fluctuations are obtained for each flow condition. Combining the detailed flow field measurements obtained using PIV (both instantaneous and time averaged) with detailed film cooling effectiveness distributions on the surface (PSP), provides a more complete view of the coolant jet–mainstream flow interaction. Near the edge of the film cooling holes, the turbulent mixing increases, and as a result the film cooling effectiveness decreases. Furthermore, the PIV measurements show the increased mixing of the coolant jet with the mainstream at the elevated freestream turbulence level resulting in a reduction of the jet to effectively protect the film cooled surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.