Dashboards are one of the most common use cases for data visualization, and their design and contexts of use are considerably different from exploratory visualization tools. In this paper, we look at the broad scope of how dashboards are used in practice through an analysis of dashboard examples and documentation about their use. We systematically review the literature surrounding dashboard use, construct a design space for dashboards, and identify major dashboard types. We characterize dashboards by their design goals, levels of interaction, and the practices around them. Our framework and literature review suggest a number of fruitful research directions to better support dashboard design, implementation, and use.
When making an inference or comparison with uncertain, noisy, or incomplete data, measurement error and confidence intervals can be as important for judgment as the actual mean values of different groups. These often misunderstood statistical quantities are frequently represented by bar charts with error bars. This paper investigates drawbacks with this standard encoding, and considers a set of alternatives designed to more effectively communicate the implications of mean and error data to a general audience, drawing from lessons learned from the use of visual statistics in the information visualization community. We present a series of crowd-sourced experiments that confirm that the encoding of mean and error significantly changes how viewers make decisions about uncertain data. Careful consideration of design tradeoffs in the visual presentation of data results in human reasoning that is more consistently aligned with statistical inferences. We suggest the use of gradient plots (which use transparency to encode uncertainty) and violin plots (which use width) as better alternatives for inferential tasks than bar charts with error bars.
Understanding and accounting for uncertainty is critical to effectively reasoning about visualized data. However, evaluating the impact of an uncertainty visualization is complex due to the difficulties that people have interpreting uncertainty and the challenge of defining correct behavior with uncertainty information. Currently, evaluators of uncertainty visualization must rely on general purpose visualization evaluation frameworks which can be ill-equipped to provide guidance with the unique difficulties of assessing judgments under uncertainty. To help evaluators navigate these complexities, we present a taxonomy for characterizing decisions made in designing an evaluation of an uncertainty visualization. Our taxonomy differentiates six levels of decisions that comprise an uncertainty visualization evaluation: the behavioral targets of the study, expected effects from an uncertainty visualization, evaluation goals, measures, elicitation techniques, and analysis approaches. Applying our taxonomy to 86 user studies of uncertainty visualizations, we find that existing evaluation practice, particularly in visualization research, focuses on Performance and Satisfaction-based measures that assume more predictable and statistically-driven judgment behavior than is suggested by research on human judgment and decision making. We reflect on common themes in evaluation practice concerning the interpretation and semantics of uncertainty, the use of confidence reporting, and a bias toward evaluating performance as accuracy rather than decision quality. We conclude with a concrete set of recommendations for evaluators designed to reduce the mismatch between the conceptualization of uncertainty in visualization versus other fields.
Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks.
The visual system can make highly efficient aggregate judgements about a set of objects, with speed roughly independent of the number of objects considered. While there is a rich literature on these mechanisms and their ramifications for visual summarization tasks, this prior work rarely considers more complex tasks requiring multiple judgements over long periods of time, and has not considered certain critical aggregation types, such as the localization of the mean value of a set of points. In this paper, we explore these questions using a common visualization task as a case study: relative mean value judgements within multi-class scatterplots. We describe how the perception literature provides a set of expected constraints on the task, and evaluate these predictions with a large-scale perceptual study with crowd-sourced participants. Judgements are no harder when each set contains more points, redundant and conflicting encodings, as well as additional sets, do not strongly affect performance, and judgements are harder when using less salient encodings. These results have concrete ramifications for the design of scatterplots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.