Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation.
Conveying a narrative with visualizations often requires choosing an order in which to present visualizations. While evidence exists that narrative sequencing in traditional stories can affect comprehension and memory, little is known about how sequencing choices affect narrative visualization. We consider the forms and reactions to sequencing in narrative visualization presentations to provide a deeper understanding with a focus on linear, 'slideshow-style' presentations. We conduct a qualitative analysis of 42 professional narrative visualizations to gain empirical knowledge on the forms that structure and sequence take. Based on the results of this study we propose a graph-driven approach for automatically identifying effective sequences in a set of visualizations to be presented linearly. Our approach identifies possible transitions in a visualization set and prioritizes local (visualization-to-visualization) transitions based on an objective function that minimizes the cost of transitions from the audience perspective. We conduct two studies to validate this function. We also expand the approach with additional knowledge of user preferences for different types of local transitions and the effects of global sequencing strategies on memory, preference, and comprehension. Our results include a relative ranking of types of visualization transitions by the audience perspective and support for memory and subjective rating benefits of visualization sequences that use parallelism as a structural device. We discuss how these insights can guide the design of narrative visualization and systems that support optimization of visualization sequence.
Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity.
Understanding and accounting for uncertainty is critical to effectively reasoning about visualized data. However, evaluating the impact of an uncertainty visualization is complex due to the difficulties that people have interpreting uncertainty and the challenge of defining correct behavior with uncertainty information. Currently, evaluators of uncertainty visualization must rely on general purpose visualization evaluation frameworks which can be ill-equipped to provide guidance with the unique difficulties of assessing judgments under uncertainty. To help evaluators navigate these complexities, we present a taxonomy for characterizing decisions made in designing an evaluation of an uncertainty visualization. Our taxonomy differentiates six levels of decisions that comprise an uncertainty visualization evaluation: the behavioral targets of the study, expected effects from an uncertainty visualization, evaluation goals, measures, elicitation techniques, and analysis approaches. Applying our taxonomy to 86 user studies of uncertainty visualizations, we find that existing evaluation practice, particularly in visualization research, focuses on Performance and Satisfaction-based measures that assume more predictable and statistically-driven judgment behavior than is suggested by research on human judgment and decision making. We reflect on common themes in evaluation practice concerning the interpretation and semantics of uncertainty, the use of confidence reporting, and a bias toward evaluating performance as accuracy rather than decision quality. We conclude with a concrete set of recommendations for evaluators designed to reduce the mismatch between the conceptualization of uncertainty in visualization versus other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.