We describe an interactive, computer-assisted framework for combining parts of a set of photographs into a single composite picture, a process we call "digital photomontage." Our framework makes use of two techniques primarily: graph-cut optimization, to choose good seams within the constituent images so that they can be combined as seamlessly as possible; and gradient-domain fusion, a process based on Poisson equations, to further reduce any remaining visible artifacts in the composite. Also central to the framework is a suite of interactive tools that allow the user to specify a variety of high-level image objectives, either globally across the image, or locally through a painting-style interface. Image objectives are applied independently at each pixel location and generally involve a function of the pixel values (such as "maximum contrast") drawn from that same location in the set of source images. Typically, a user applies a series of image objectives iteratively in order to create a finished composite. The power of this framework lies in its generality; we show how it can be used for a wide variety of applications, including "selective composites" (for instance, group photos in which everyone looks their best), relighting, extended depth of field, panoramic stitching, clean-plate production, stroboscopic visualization of movement, and time-lapse mosaics.
We exploit the falloff of acuity in the visual periphery to accelerate graphics computation by a factor of 5-6 on a desktop HD display (1920×1080). Our method tracks the user's gaze point and renders three image layers around it at progressively higher angular size but lower sampling rate. The three layers are then magnified to display resolution and smoothly composited. We develop a general and efficient antialiasing algorithm easily retrofitted into existing graphics code to minimize "twinkling" artifacts in the lower-resolution layers. A standard psychophysical model for acuity falloff assumes that minimum detectable angular size increases linearly as a function of eccentricity. Given the slope characterizing this falloff, we automatically compute layer sizes and sampling rates. The result looks like a full-resolution image but reduces the number of pixels shaded by a factor of 10-15.We performed a user study to validate these results. It identifies two levels of foveation quality: a more conservative one in which users reported foveated rendering quality as equivalent to or better than non-foveated when directly shown both, and a more aggressive one in which users were unable to correctly label as increasing or decreasing a short quality progression relative to a high-quality foveated reference. Based on this user study, we obtain a slope value for the model of 1.32-1.65 arc minutes per degree of eccentricity. This allows us to predict two future advantages of foveated rendering: (1) bigger savings with larger, sharper displays than exist currently (e.g. 100 times speedup at a field of view of 70°and resolution matching foveal acuity), and (2) a roughly linear (rather than quadratic or worse) increase in rendering cost with increasing display field of view, for planar displays at a constant sharpness.
Understanding the extent to which people' s search behaviors differ in terms of the interaction flow and information targeted is important in designing interfaces to help World Wide Web users search more effectively. In this paper we describe a longitudinal log-based study that investigated variability in people' s interaction behavior when engaged in search-related activities on the Web. We analyze the search interactions of more than two thousand volunteer users over a five-month period, with the aim of characterizing differences in their interaction styles. The findings of our study suggest that there are dramatic differences in variability in key aspects of the interaction within and between users, and within and between the search queries they submit. Our findings also suggest two classes of extreme usernavigators and explorerswhose search interaction is highly consistent or highly variable. Lessons learned from these users can inform the design of tools to support effective Web-search interactions for everyone.
Conveying a narrative with visualizations often requires choosing an order in which to present visualizations. While evidence exists that narrative sequencing in traditional stories can affect comprehension and memory, little is known about how sequencing choices affect narrative visualization. We consider the forms and reactions to sequencing in narrative visualization presentations to provide a deeper understanding with a focus on linear, 'slideshow-style' presentations. We conduct a qualitative analysis of 42 professional narrative visualizations to gain empirical knowledge on the forms that structure and sequence take. Based on the results of this study we propose a graph-driven approach for automatically identifying effective sequences in a set of visualizations to be presented linearly. Our approach identifies possible transitions in a visualization set and prioritizes local (visualization-to-visualization) transitions based on an objective function that minimizes the cost of transitions from the audience perspective. We conduct two studies to validate this function. We also expand the approach with additional knowledge of user preferences for different types of local transitions and the effects of global sequencing strategies on memory, preference, and comprehension. Our results include a relative ranking of types of visualization transitions by the audience perspective and support for memory and subjective rating benefits of visualization sequences that use parallelism as a structural device. We discuss how these insights can guide the design of narrative visualization and systems that support optimization of visualization sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.