Mangroves are defined by the presence of trees that mainly occur in the intertidal zone, between land and sea, in the (sub) tropics. The intertidal zone is characterised by highly variable environmental factors, such as temperature, sedimentation and tidal currents. The aerial roots of mangroves partly stabilise this environment and provide a substratum on which many species of plants and animals live. Above the water, the mangrove trees and canopy provide important habitat for a wide range of species. These include birds, insects, mammals and reptiles. Below the water, the mangrove roots are overgrown by epibionts such as tunicates, sponges, algae, and bivalves. The soft substratum in the mangroves forms habitat for various infaunal and epifaunal species, while the space between roots provides shelter and food for motile fauna such as prawns, crabs and fishes. Mangrove litter is transformed into detritus, which partly supports the mangrove food web. Plankton, epiphytic algae and microphytobenthos also form an important basis for the mangrove food web. Due to the high abundance of food and shelter, and low predation pressure, mangroves form an ideal habitat for a variety of animal species, during part or all of their life cycles. As such, mangroves may function as nursery habitats for (commercially important) crab, prawn and fish species, and support offshore fish populations and fisheries. Evidence for linkages between mangroves and offshore habitats by animal migrations is still scarce, but highly needed for management and conservation purposes. Here, we firstly reviewed the habitat function of mangroves by common taxa of terrestrial and marine animals. Secondly, we reviewed the literature with regard to the degree of interlinkage between mangroves and adjacent habitats, a research area which has received increasing attention in the last decade. Finally, we reviewed current insights into the degree to which mangrove litter fuels the mangrove food web, since this has been the subject of longstanding debate.
Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.
Stakeholders increasingly expect ecosystem assessments as part of advice on fisheries management. Quantitative models to support fisheries decision‐making may be either strategic (‘big picture’, direction‐setting and contextual) or tactical (focused on management actions on short timescales), with some strategic models informing the development of tactical models. We describe and review ‘Models of Intermediate Complexity for Ecosystem assessments’ (MICE) that have a tactical focus, including use as ecosystem assessment tools. MICE are context‐ and question‐driven and limit complexity by restricting the focus to those components of the ecosystem needed to address the main effects of the management question under consideration. Stakeholder participation and dialogue is an integral part of this process. MICE estimate parameters through fitting to data, use statistical diagnostic tools to evaluate model performance and account for a broad range of uncertainties. These models therefore address many of the impediments to greater use of ecosystem models in strategic and particularly tactical decision‐making for marine resource management and conservation. MICE are capable of producing outputs that could be used for tactical decision‐making, but our summary of existing models suggests this has not occurred in any meaningful way to date. We use a model of the pelagic ecosystem in the Coral Sea and a linked catchment and ocean model of the Gulf of Carpentaria, Australia, to illustrate how MICE can be constructed. We summarize the major advantages of the approach, indicate opportunities for the development of further applications and identify the major challenges to broad adoption of the approach.
This special issue is a reflection by tourism scholars on the initial impacts of the COVID-19 pandemic on the world, with travel and tourism being among the most significant areas to bear those impacts. However, instead of an analysis of the impacts of COVID-19 on tourism places and sectors, as is the emphasis for many other journal special issues this year, the papers in this issue focus on visions of how the pandemic events of 2020 are contributing to a possibly substantial, meaningful and positive transformation of the planet in general, and tourism specifically. This is not a return to a 'normal' that existed beforebut is instead a vision of how the world is changing, evolving, and transforming into something different from what it was before the 2020 global pandemic experience. Comments from the guest editors for this special issue are individually identified in this introduction editorial.
Babcock et al. ECEs Affect 45% Australian Coastline abrupt ecological changes that are caused by ECEs could have greater long-term impacts than slower warming that leads to gradual reorganization and possible evolution and adaptation. ECEs are an emerging threat to marine ecosystems, and will require better seasonal prediction and mitigation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.