Artemisinin—the next generation: Efficacies of artemisone against the malaria parasite are substantially greater than those of the current artemisinin “gold standard”, artesunate. Also, in contrast to most current artemisinins it displays low lipophilicity and negligible neuro‐ and cytotoxicity in in vitro and in vivo assays. Thus, the drug offers promise for use in artemisinin‐based combination therapy.
SummaryTo determine the level of antimalarial drug resistance in southern Papua, Indonesia, we assessed the therapeutic efficacy of chloroquine plus sulfadoxine–pyrimethamine (CQ+SP) for Plasmodium falciparum infections as well as CQ monotherapy for P. vivax infections. Patients with P. falciparum failing therapy were re-treated with unsupervised quinine ± doxycycline therapy and those with P. vivax with either unsupervised quinine ± doxycycline or amodiaquine. In total, 143 patients were enrolled in the study (103 treated with CQ+SP and 40 with CQ). Early treatment failures occurred in four patients (4%) with P. falciparum and six patients (15%) with P. vivax. The failure rate by Day 28 for P. vivax was 65% (95% CI 49–81). After PCR correction for re-infections, the Day 42 recrudescence rate for P. falciparum infections was 48% (95% CI 31–65). Re-treatment with unsupervised quinine ± doxycycline resulted in further recurrence of malaria in 48% (95% CI 31–65) of P. falciparum infections and 70% (95% CI 37–100) of P. vivax infections. Eleven patients with recurrent P. vivax were re-treated with amodiaquine; there were no early or late treatment failures. In southern Papua, a high prevalence of drug resistance of P. falciparum and P. vivax exists both to first- and second-line therapies. Preliminary data indicate that amodiaquine retains superior efficacy compared with CQ for CQ-resistant P. vivax.
This study represents the first phase III trial of the safety, tolerability, and effectiveness of tafenoquine for malaria prophylaxis. In a randomized (3:1), double-blinded study, Australian soldiers received weekly malaria prophylaxis with 200 mg tafenoquine (492 subjects) or 250 mg mefloquine (162 subjects) for 6 months on a peacekeeping deployment to East Timor. After returning to Australia, tafenoquine-receiving subjects received a placebo and mefloquine-receiving subjects received 30 mg primaquine daily for 14 days. There were no clinically significant differences between hematological and biochemical parameters of the treatment groups. Treatment-related adverse events for the two groups were similar (tafenoquine, 13.4%; mefloquine, 11.7%). Three subjects on tafenoquine (0.6%) and none on mefloquine discontinued prophylaxis because of possible drug-related adverse events. No diagnoses of malaria occurred for either group during deployment, but 4 cases (0.9%) and 1 case (0.7%) of Plasmodium vivax infection occurred among the tafenoquine and mefloquine groups, respectively, up to 20 weeks after discontinuation of medication. In a subset of subjects recruited for detailed safety assessments, treatment-related mild vortex keratopathy was detected in 93% (69 of 74) of tafenoquine subjects but none of the 21 mefloquine subjects. The vortex keratopathy was not associated with any effect on visual acuity and was fully resolved in all subjects by 1 year. Tafenoquine appears to be safe and well tolerated as malaria prophylaxis. Although the volunteers' precise exposure to malaria could not be proven in this study, tafenoquine appears to be a highly efficacious drug for malaria prophylaxis.
Hypoxanthine-guanine-[xanthine] phosphoribosyltransferase (HG[X]PRT) is considered an important target for antimalarial chemotherapy as it is the only pathway for the synthesis of the purine nucleoside monophosphates required for DNA/RNA production. Thus, inhibition of this enzyme should result in cessation of replication. The aza-acyclic nucleoside phosphonates (aza-ANPs) are good inhibitors of Plasmodium falciparum HGXPRT (PfHGXPRT), with Ki values as low as 0.08 and 0.01 μM for Plasmodium vivax HGPRT (PvHGPRT). Prodrugs of these aza-ANPs exhibit antimalarial activity against Pf lines with IC50 values (0.8-6.0 μM) and have low cytotoxicity against human cells. Crystal structures of six of these compounds in complex with human HGPRT have been determined. These suggest that the different affinities of these aza-ANPs could be due to the flexibility of the loops surrounding the active site as well as the flexibility of the inhibitors, allowing them to adapt to fit into three binding pockets of the enzyme(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.