We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10 −7 to P = 4 × 10 −14 , with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.The malaria parasite Plasmodium falciparum kills on the order of a million African children each year 1 , and this is a small fraction of the number of infected individuals in the population [1][2][3] . In communities where everyone is repeatedly infected with P. falciparum, host genetic factors account for ~25% of the risk of severe malaria, that is, life-threatening forms of the disease 3 . The strongest known determinant of risk, hemoglobin S (HbS), accounts for 2% of the total variation, implying that only a small fraction of genetic resistance factors have so far been discovered 3 . Identifying the genetic basis of protective immunity against severe malaria may provide important insights for vaccine development.Here we examine the possibility of approaching this problem by genome-wide association (GWA) analysis. There are many unsolved methodological questions about how to conduct an effective GWA study in Africa 4 . High levels of ethnic diversity may result in false-positive associations owing to population structure. Variations in haplotype structure between different ethnic groups may reduce power to detect GWA signals, particularly when data are amalgamated across multiple study sites. Low LD implies the need for denser genotyping arrays than are currently available: a crude estimate is that an African GWA study with 1.5 million SNPs would have approximately the same statistical power as a European study with Jallow et al.Page 2Nat Genet. Author manuscript; available in PMC 2010 September 21. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript 0.6 million SNPs5, but this is based on HapMap data from a single ethnic group and a larger number of SNPs may be needed to achieve adequate power across different ethnic groups.We carried out an initial GWA study in Gambian children that explores these methodological questions. Genotyping of ~500,000 SNPs was conducted on 1,060 cases of severe malaria and 1...
Many human genetic associations with resistance to malaria have been reported but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. There was strong evidence of association with the HBB, ABO, ATP2B4, G6PD and CD40LG loci but previously reported associations at 22 other loci did not replicate in the multi-centre analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anaemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed.
To investigate the impact of urban agriculture on malaria transmission risk in urban Accra larval and adult stage mosquito surveys, were performed. Local transmission was implicated as Anopheles spp. were found breeding and infected Anopheles mosquitoes were found resting in houses in the study sites. The predominant Anopheles species was Anopheles gambiae s.s.. The relative proportion of molecular forms within a subset of specimens was 86% S-form and 14% M-form. Anopheles spp. and Culex quinquefasciatus outdoor biting rates were respectively three and four times higher in areas around agricultural sites (UA) than in areas far from agriculture (U). The annual Entomological Inoculation Rate (EIR), the number of infectious bites received per individual per year, was 19.2 and 6.6 in UA and U sites, respectively. Breeding sites were highly transitory in nature, which poses a challenge for larval control in this setting. The data also suggest that the epidemiological importance of urban agricultural areas may be the provision of resting sites for adults rather than an increased number of larval habitats. Host-seeking activity peaked between 2–3 am, indicating that insecticide-treated bednets should be an effective control method.
The African malaria mosquito Anopheles gambiae is diversifying into ecotypes known as M and S forms. This process is thought to be promoted by adaptation to different larval habitats, but its genetic underpinnings remain elusive. To identify candidate targets of divergent natural selection in M and S, we performed genomewide scanning in paired population samples from Mali, followed by resequencing and genotyping from five locations in West, Central, and East Africa. Genome scans revealed a significant peak of M-S divergence on chromosome 3L, overlapping five known or suspected immune response genes. Resequencing implicated a selective target at or near the TEP1 gene, whose complement C3-like product has antiparasitic and antibacterial activity. Sequencing and allele-specific genotyping showed that an allelic variant of TEP1 has been swept to fixation in M samples from Mali and Burkina Faso and is spreading into neighboring Ghana, but is absent from M sampled in Cameroon, and from all sampled S populations. Sequence comparison demonstrates that this allele is related to, but distinct from, TEP1 alleles of known resistance phenotype. Experimental parasite infections of advanced mosquito intercrosses demonstrated a strong association between this TEP1 variant and resistance to both rodent malaria and the native human malaria parasite Plasmodium falciparum. Although malaria parasites may not be direct agents of pathogen-mediated selection at TEP1 in nature-where larvae may be the more vulnerable life stage-the process of adaptive divergence between M and S has potential consequences for malaria transmission.ecological speciation | malaria vector | population genomics | thioester immune gene
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.