Biodegradation of crude oil in subsurface petroleum reservoirs has adversely affected the majority of the world's oil, making recovery and refining of that oil more costly. The prevalent occurrence of biodegradation in shallow subsurface petroleum reservoirs has been attributed to aerobic bacterial hydrocarbon degradation stimulated by surface recharge of oxygen-bearing meteoric waters. This hypothesis is empirically supported by the likelihood of encountering biodegraded oils at higher levels of degradation in reservoirs near the surface. More recent findings, however, suggest that anaerobic degradation processes dominate subsurface sedimentary environments, despite slow reaction kinetics and uncertainty as to the actual degradation pathways occurring in oil reservoirs. Here we use laboratory experiments in microcosms monitoring the hydrocarbon composition of degraded oils and generated gases, together with the carbon isotopic compositions of gas and oil samples taken at wellheads and a Rayleigh isotope fractionation box model, to elucidate the probable mechanisms of hydrocarbon degradation in reservoirs. We find that crude-oil hydrocarbon degradation under methanogenic conditions in the laboratory mimics the characteristic sequential removal of compound classes seen in reservoir-degraded petroleum. The initial preferential removal of n-alkanes generates close to stoichiometric amounts of methane, principally by hydrogenotrophic methanogenesis. Our data imply a common methanogenic biodegradation mechanism in subsurface degraded oil reservoirs, resulting in consistent patterns of hydrocarbon alteration, and the common association of dry gas with severely degraded oils observed worldwide. Energy recovery from oilfields in the form of methane, based on accelerating natural methanogenic biodegradation, may offer a route to economic production of difficult-to-recover energy from oilfields.
This paper explores the motion planning problem for multiple moving objects. The approach taken consists of assigning priorities to the objects, then planning motions one object at a time. For each moving object, the planner constructs a configuration space-time that represents the time-varying constraints imposed on the moving object by the other moving and stationary objects. The planner represents this space-time approximately, using two-dimensional slices. The space-time is then searched for a collision-free path. The paper demonstrates this approach in two domains. One domain consists of translating planar objects; the other domain consists of two-link planar articulated arms.
This paper explores the motion-planning problem for multiple moving objects. The approach taken consists of assigning priorities to the objects, then planning motions one object at a time. For each moving object, the planner constructs a configuration space-time that represents the time-varying constraints imposed on the moving object by the other moving and stationary objects. The planner represents this space-time approximately, using two-dimensional slices. The space-time is then searched for a collision-free path. The paper demonstrates this approach in two domains. One domain consists of translating planar objects; the other domain consists of two-link planar articulated arms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.