The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p-n junctions, transistors, photodiodes and lasers. A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET) and infrared microspectroscopy, we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping and provides direct evidence of a widely tunable bandgap-spanning a spectral range from zero to mid-infrared-that has eluded previous attempts. Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.
The remarkable properties of atomically-thin semiconducting TMD layers include an indirect-to-direct bandgap crossover 1, 2, 9 , field-induced transport with high on-off ratios 16 , 3 valley selective circular dichroism [3][4][5][6] , and strong photovoltaic response 17,18 . Fundamental understanding of the electron/hole quasiparticle band structure and many-body interactions in 2D TMDs, however, is still lacking. Enhanced Coulomb interactions due to low-dimensional effects are expected to increase the quasiparticle bandgap as well as to cause electron-hole pairs to form more strongly bound excitons [10][11][12][13] . Untangling such many-body effects in single-layer TMDs requires measurement of both the electronic bandgap and the optical bandgap, the most fundamental parameters for transport and optoelectronics, respectively. The electronic bandgap (E g ) characterizes single-particle (or quasiparticle) excitations and is defined by the sum of the energies needed to separately tunnel an electron and a hole into monolayer MoSe 2 . The optical bandgap (E opt ), on the other hand, describes the energy required to create an exciton, a correlated two-particle electron-hole pair, via optical absorption. The difference in these energies (E g -E opt ) directly yields the exciton binding energy (E b ) (Fig. 2a). Here we provide evidence for Coulomb driven quasiparticle bandgap renormalization and unusually strong exciton stability in 2D TMD through direct determination of both E g and E opt via STS and PL spectroscopy, respectively. STS and PL measurements were carried out on the same high-quality sub-monolayer MoSe 2 films grown on epitaxial bilayer graphene (BLG) on a 6H-SiC(0001) substrate.Because the MoSe 2 surface coverage for our sample was ~ 0.8 ML, we were able to simultaneously image the MoSe 2 monolayer and the underlying graphene substrate using scanning tunneling microscopy (STM). We experimentally investigated both the electronic structure and the optical transitions in monolayer MoSe 2 /BLG by combining STS and PL spectroscopy. Fig. 2b shows a typical STM dI/dV spectrum acquired on monolayer MoSe 2 /BLG. The observed electronic structure is dominated by a large electronic bandgap surrounded by features labeled V 1-4 in the valence band (VB) and C 1 in the conduction band (CB). The MoSe 2 band edges are best determined by taking the logarithm of dI/dV, as shown in Fig. 2d.There the VB maximum (VBM) for monolayer MoSe 2 is seen to be located at -1.55 ± 0.03 V and the CB minimum (CBM) at 0.63 ± 0.02 V. The relative position of E F (V bias = 0 V) with respect to the band edges reveals n-type doping for our samples, although with 5 a very low carrier concentration. We tentatively attribute the n-doping of our MoSe 2 samples to intrinsic point defects such as vacancies and/or lattice antisites, which have been found to be responsible for n-doping in similar materials 20 . Our STS measurements yield a value for the single-particle electronic bandgap of E g = E CBM -E VBM = 2.18 eV ± 0.04 eV. The uncertainty ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.