Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because two-dimensional MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions. Theory predicts that many stacked MX2 heterostructures form type II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting. Here, we report the first experimental observation of ultrafast charge transfer in photoexcited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel two-dimensional devices for optoelectronics and light harvesting.
The remarkable properties of atomically-thin semiconducting TMD layers include an indirect-to-direct bandgap crossover 1, 2, 9 , field-induced transport with high on-off ratios 16 , 3 valley selective circular dichroism [3][4][5][6] , and strong photovoltaic response 17,18 . Fundamental understanding of the electron/hole quasiparticle band structure and many-body interactions in 2D TMDs, however, is still lacking. Enhanced Coulomb interactions due to low-dimensional effects are expected to increase the quasiparticle bandgap as well as to cause electron-hole pairs to form more strongly bound excitons [10][11][12][13] . Untangling such many-body effects in single-layer TMDs requires measurement of both the electronic bandgap and the optical bandgap, the most fundamental parameters for transport and optoelectronics, respectively. The electronic bandgap (E g ) characterizes single-particle (or quasiparticle) excitations and is defined by the sum of the energies needed to separately tunnel an electron and a hole into monolayer MoSe 2 . The optical bandgap (E opt ), on the other hand, describes the energy required to create an exciton, a correlated two-particle electron-hole pair, via optical absorption. The difference in these energies (E g -E opt ) directly yields the exciton binding energy (E b ) (Fig. 2a). Here we provide evidence for Coulomb driven quasiparticle bandgap renormalization and unusually strong exciton stability in 2D TMD through direct determination of both E g and E opt via STS and PL spectroscopy, respectively. STS and PL measurements were carried out on the same high-quality sub-monolayer MoSe 2 films grown on epitaxial bilayer graphene (BLG) on a 6H-SiC(0001) substrate.Because the MoSe 2 surface coverage for our sample was ~ 0.8 ML, we were able to simultaneously image the MoSe 2 monolayer and the underlying graphene substrate using scanning tunneling microscopy (STM). We experimentally investigated both the electronic structure and the optical transitions in monolayer MoSe 2 /BLG by combining STS and PL spectroscopy. Fig. 2b shows a typical STM dI/dV spectrum acquired on monolayer MoSe 2 /BLG. The observed electronic structure is dominated by a large electronic bandgap surrounded by features labeled V 1-4 in the valence band (VB) and C 1 in the conduction band (CB). The MoSe 2 band edges are best determined by taking the logarithm of dI/dV, as shown in Fig. 2d.There the VB maximum (VBM) for monolayer MoSe 2 is seen to be located at -1.55 ± 0.03 V and the CB minimum (CBM) at 0.63 ± 0.02 V. The relative position of E F (V bias = 0 V) with respect to the band edges reveals n-type doping for our samples, although with 5 a very low carrier concentration. We tentatively attribute the n-doping of our MoSe 2 samples to intrinsic point defects such as vacancies and/or lattice antisites, which have been found to be responsible for n-doping in similar materials 20 . Our STS measurements yield a value for the single-particle electronic bandgap of E g = E CBM -E VBM = 2.18 eV ± 0.04 eV. The uncertainty ...
The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot electron cooling rate near the Fermi level by using graphene as novel photothermal thermometer that measures the electron temperature ($T(t)$) as it cools dynamically. We find the photocurrent generated from graphene $p-n$ junctions is well described by the energy dissipation rate $C dT/dt=-A(T^3-T_l^3)$, where the heat capacity is $C=\alpha T$ and $T_l$ is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision (SC) cooling mechanism. We find that the SC model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to $\sim$3000 K) and lattice (10 to 295 K) temperatures investigated.Comment: 7pages, 5 figure
The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K' valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.