Budding marks initiation of cell division in Saccharomyces cerevisiae. Consequently, cell cycle progression can be monitored by the fraction of budded cells (budding index) in a proliferating cell population. We determined the budding index of a large collection of deletion strains, to systematically identify genes involved in cell cycle progression.
In immersion lithography, high index fluids are used to increase the numerical aperture (NA) of the imaging system and decrease the minimum printable feature size. Water has been used in first generation immersion lithography at 193 nm to reach the 45 nm node, but to reach the 38 and 32 nm nodes, fluids and resists with a higher index than water are needed.A critical issue hindering the implementation of 193i at the 32 nm node is the availability of high refractive index (n > 1.8) and low optical absorption fluids and resists. It is critical to note that high index resists are necessary only when a high refractive index fluid is in use. High index resist improves the depth of focus (DOF) even without high index fluids.In this study, high refractive index nanoparticles have been synthesized and introduced into a resist matrix to increase the overall refractive index. The strategy followed is to synthesize PGMEA-soluble nanoparticles and then disperse them into a 193 nm resist. High index nanoparticles 1-2 nm in diameter were synthesized by a combination of hydrolysis and sol-gel methods. A ligand exchange method was used, allowing the surface of the nanoparticles to be modified with photoresist-friendly moieties to help them disperse uniformly in the resist matrix. The refractive index and ultraviolet absorbance were measured to evaluate the quality of next generation immersion lithography resist materials.
By organizing and making widely accessible the increasing amounts of data from high-throughput analyses, protein interaction databases have become an integral resource for the biological community in relating sequence data with higher-order function. To provide a sense of the use and applicability of these databases, we describe each of the major comprehensive interaction databases as well as some of the more specialized ones. Content description, search/browse functionalities, and data presentation are discussed. A succinct explanation of database contents helps the user quickly identify whether the database contains applicable information to their research interest. Broad levels of search/browse functions as well as descriptions/examples allow users to quickly find and access pertinent data. At this point, clear presentation of search results as well as the primary content is necessary. Many databases display information graphically or divided into smaller digestible parts over a number of tabbed/linked pages. In addition, cross-linking between the databases promotes interconnectivity of the data and is an added layer of relational data for the user. Overall, although these protein interaction databases are under continual improvement, their current state shows that much time and effort has gone into organizing and presenting these large sets of data-describing protein interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.