Summary
1. The effects of eutrophication on phytoplankton, zooplankton and fish in lakes are well known. By contrast, little is known about the response of the zoobenthos to nutrient enrichment, while smaller organisms, such as the meiofauna, have for the most part been neglected.
2. In a long‐term (16 months) microcosm experiment, we assessed the effects of five levels of nutrients [total phosphorus (TP), 7–250 μg L−1; nitrate, 2–8 mg L−1] on a freshwater meiofaunal assemblage and on nematode diversity in particular.
3. Within the first 8 months, meiofaunal succession was only weakly affected, whereas, during the last 4 months, nutrient addition influenced most of the main taxa, with a concomitant change in the assemblage structure.
4. The density of the numerically dominant nematodes decreased upon nutrient enrichment, whereas ostracods became more numerous. Other taxa, including copepods, reached a maximum at intermediate nutrient levels or, in case of oligochaetes, were almost unaffected by nutrient enrichment. However, the changes in the density of the main taxa were usually insufficient to alter their biomass. Consequently, meiofaunal biomass was remarkably unresponsive to nutrient addition, while meiofaunal density displayed a unimodal relationship, with a peak at a TP concentration of 30 μg L−1. In addition, nematode species richness decreased significantly with increasing nutrient concentrations.
5. We hypothesise that the response of meiofaunal taxa to nutrients is attributable to the development of primary producers, which shifted with enrichment from low densities of edible diatoms and unicellular green algae to large standing stocks of inedible forms, such as Lemna minor and Cladophora spp.