In the spectrum of breast cancers, categorization according to the four gene expression-based subtypes 'Luminal A,' 'Luminal B,' 'HER2-enriched,' and 'Basal-like' is the method of choice for prognostic and predictive value. As gene expression assays are not yet universally available, routine immunohistochemical stains act as surrogate markers for these subtypes. Thus, congruence of surrogate markers and gene expression tests is of utmost importance. In this study, 3 cohorts of primary breast cancer specimens (total n = 436) with up to 28 years of survival data were scored for Ki67, ER, PR, and HER2 status manually and by digital image analysis (DIA). The results were then compared for sensitivity and specificity for the Luminal B subtype, concordance to PAM50 assays in subtype classification and prognostic power. The DIA system used was the Visiopharm Integrator System. DIA outperformed manual scoring in terms of sensitivity and specificity for the Luminal B subtype, widely considered the most challenging distinction in surrogate subclassification, and produced slightly better concordance and Cohen's κ agreement with PAM50 gene expression assays. Manual biomarker scores and DIA essentially matched each other for Cox regression hazard ratios for all-cause mortality. When the Nottingham combined histologic grade (Elston-Ellis) was used as a prognostic surrogate, stronger Spearman's rank-order correlations were produced by DIA. Prognostic value of Ki67 scores in terms of likelihood ratio χ 2 (LR χ 2 ) was higher for DIA that also added significantly more prognostic information to the manual scores (LR− Δχ 2 ). In conclusion, the system for DIA evaluated here was in most aspects a superior alternative to manual biomarker scoring. It also has the potential to reduce time consumption for pathologists, as many of the steps in the workflow are either automatic or feasible to manage without pathological expertise.
Digital image analysis of Ki67 in hot spots is the marker of choice for routine analysis of proliferation in breast cancer.
Purpose The proliferation-associated biomarker Ki67 has potential utility in breast cancer, including aiding decisions based on prognosis, but has unacceptable inter-and intralaboratory variability. The aim of this study was to compare the prognostic potential for Ki67 hot spot scoring and global scoring using different digital image analysis (DIA) platforms. Methods An ER+/HER2− breast cancer cohort (n = 139) with whole slide images of sequential sections stained for hematoxylin-eosin, pancytokeratin and Ki67, was analyzed using two DIA platforms. For hot spot analysis virtual dual staining was applied, aligning pancytokeratin and Ki67 images and 22 hot spot algorithms with different features were designed. For global Ki67 scoring an automated QuPath algorithm was applied on Ki67-stained whole slide images. Clinicopathological data included overall survival (OS) and recurrence-free survival (RFS) along with PAM50 molecular subtypes. Results We show significant variations in Ki67 hot spot scoring depending on number of included tumor cells, hot spot size, shape and location. The higher the number of scored tumor cells, the higher the reproducibility of Ki67 proliferation values. Hot spot scoring had greater prognostic potential for RFS in high versus low Ki67 subgroups (hazard ratio (HR) 6.88, CI 2.07-22.87, p = 0.002), compared to global scoring (HR 3.13, CI 1.41-6.96, p = 0.005). Regarding OS, global scoring (HR 7.46, CI 2.46-22.58, p < 0.001) was slightly better than hot spot scoring (HR 6.93, CI 1.61-29.91, p = 0.009). In adjusted multivariate analysis, only global scoring was an independent prognostic marker for both RFS and OS. In addition, global Ki67-based surrogate subtypes reached higher concordance with PAM50 molecular subtype for luminal A and B tumors (66.3% concordance rate, κ = 0.345), than using hot spot scoring (55.8% concordance rate, κ = 0.250). Conclusions We conclude that the automated global Ki67 scoring is feasible and shows clinical validity, which, however, needs to be confirmed in a larger cohort before clinical implementation.
Testicular cancer (TC) is usually diagnosed after manifestation of an overt tumour. Tumour formation is preceded by a pre-invasive and asymptomatic stage, carcinoma in situ (CIS) testis, except for very rare subtypes. The CIS cells are located within seminiferous tubules but can be exfoliated and detected in ejaculates with specific CIS markers. We have built a high throughput framework involving automated immunocytochemical staining, scanning microscopy and in silico image analysis allowing automated detection and grading of CIS-like stained objects in semen samples. In this study, 1175 ejaculates from 765 subfertile men were tested using this framework. In 5/765 (0.65%) cases, CIS-like cells were identified in the ejaculate. Three of these had bilateral testicular biopsies performed and CIS was histologically confirmed in two. In total, 63 bilateral testicular biopsy were performed in conjunction with analysis of the ejaculates because of infertility work-up. Histological analysis of the biopsies for the presence of CIS yielded a test sensitivity of 0.67 and a specificity of 0.98. In addition, ejaculates from 45 patients with clinical signs of an overt TC were investigated and yielded a slightly lower sensitivity (0.51), possibly because of obstruction. We conclude that this novel non-invasive test combining automated immunocytochemistry and advanced image analysis allows identification of TC at the CIS stage with a high specificity, but a negative test does not completely exclude CIS. On the basis of the results, we propose that the assay could be offered to subfertile men and other patients who are at increased risk of TC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.