During heat sterilization of peritoneal dialysis solutions, glucose is partially transformed into glucose degradation products (GDPs), which significantly reduce the biocompatibility of these medicinal products. Targeted α-dicarbonyl screening identified glyoxal, methylglyoxal, 3-deoxyglucosone, 3,4-dideooxyglucosone-3-ene, glucosone, and 3-deoxygalactosone as the major six GDPs with α-dicarbonyl structure. In the present study, an ultra-high-performance liquid chromatography method was developed which allows the separation of all relevant α-dicarbonyl GDPs within a run time of 15 min after derivatization with o-phenylenediamine. Hyphenated diode array detection/tandem mass spectrometry detection provides very robust quantification and, at the same time, unequivocal peak confirmation. Systematic evaluation of the derivatization process resulted in an optimal derivatization period that provided maximal derivatization yield, minimal de novo formation (uncertainty range ±5%), and maximal sample throughput. The limit of detection of the method ranged from 0.13 to 0.19 μM and the limit of quantification from 0.40 to 0.57 μM. Relative standard deviations were below 5%, and recovery rates ranged between 91% and 154%, dependent on the type and concentration of the analyte (in 87 out of 90 samples, recovery rates were 100 ± 15%). The method was then applied for the analysis of commercial peritoneal dialysis fluids (nine different product types, samples from three lots of each).
A method was developed and validated to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids by high-performance liquid chromatography with UV detection after derivatization with o-phenylenediamine. The advantages of this method compared with direct HPLC analysis are (i) the possibility of quantifying 3,4-dideoxyglucosone-3-ene simultaneously together with other glucose degradation products, (ii) the compatibility of the method with MS detection for unequivocal identification of the analyte and (iii) a bathochromic shift of the UV absorbance maximum which leads to higher selectivity. The validated method was used to measure 3,4-dideoxyglucosone-3-ene concentrations additionally to the glucose degradation products 3-deoxyglucosone, methylglyoxal, glyoxal, 5-hydroxymethylfurfural, 2-furaldehyde, formaldehyde and acetaldehyde in 19 commercial products for peritoneal dialysis.
Heat sterilization of peritoneal dialysis (PD) fluids leads to the formation of glucose degradation products (GDPs), which considerably impair long-term application of PD. Knowledge of the exact composition of GDPs present in a PD fluid is important to improve the biocompatibility of dialysis solutions. The present study conducted a targeted screening for novel GDPs with α-dicarbonyl structure in PD fluids. Thus, 3-deoxygalactosone (3-DGal) was identified for the first time in PD fluids. Quantification of 3-DGal was achieved by high-performance liquid chromatography (HPLC)/DAD/MSMS after derivatization with o-phenylendiamine to yield the quinoxaline derivative. Baseline separation of all α-dicarbonyl GDPs, particularly of the diastereomers 3-deoxyglucosone (3-DG) and 3-DGal, required the application of a polar, phenyl-based RP column for HPLC and additional pH-gradient elution. Concentrations of 3-DGal ranged between 55.8 and 136.9 μM in single-chamber PD fluids, and between 2.5 and 12.4 μM in double-chamber PD fluids. In solutions containing glucose, 3-DGal is formed from 3-DG via the intermediate 3,4-dideoxyglucosone-3-ene (3,4-DGE). Further studies are now required to determine the (patho-)physiological properties of 3-DGal.
Complementary use of several hyphenated mass spectrometric methods enables successful identification of leachable compounds in the PUR adhesive under study. This opens the way for quantification and evaluation of the potential toxicities of these compounds. Despite the range of compositions of PUR laminates, the approach presented here may be applicable for the qualitative assessment of all PURs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.