The mass fragmentation of potato glycoalkaloids, α-solanine and α-chaconine, and the aglycons, demissidine and solasodine were studied using the Orbitrap Fourier transform (FT) mass spectrometer. Using the linear ion trap (LIT) mass spectrometry, multistage collisional-induced dissociation (CID) experiments (MS(n)) on the [M + H](+) precursor ions were performed to aid the elucidation of the mass fragmentation pathways. In addition, higher energy collisional-induced dissociation (HCD) mass spectra were generated for these toxins at a high resolution setting [100,000 FWHM (full width at half maximum)] using the Orbitrap. This hybrid mass spectrometry instrumentation was exploited to produce MS(3) spectra by selecting MS(2) product ions, generated using LIT MS, and fragmentation using HCD. The accurate mass data in the MS(3) spectra aided the confirmation of proposed product ion formulae. The precursor and product ions from glycoalkaloids lost up to four sugars from different regions during MS(n) experiments. Mass fragmentation of the six-ring aglycons were similar, generating major product ions that resulted from cleavages at the B-rings and E-rings.
Tomatoes, members of the Solanaceae plant family, produce biologically active secondary metabolites, including glycoalkaloids, which may have both adverse and beneficial biological effects. Using the linear ion trap (LIT) mass spectrometry, multi-stage collision induced dissociation (CID) experiments (MSn) were performed to elucidate characteristic fragmentation pathways of the glycoalkaloid, tomatidine and of β1-hydroxytomatine. High resolution with high accuracy mass analysis using an Orbitrap fourier transform MS with higher-energy collisional induced dissociation (HCD) was used to produce mass spectra data across a wide spectral range for confirmation of proposed ion structures and formulae.
Effluent from wastewater treatment plants have been identified as an important source of micro-organic contaminants in the environment. An online high-performance liquid chromatography-heated electrospray ionization tandem mass spectrometric method was developed and validated for the determination of basic pesticides in effluent wastewaters. Most available methods for pesticide analysis of wastewater samples are time-consuming, require complex clean-up steps and are difficult to automate. The method developed used a simple solid-phase extraction clean-up for salt and lipid reduction. On-line sample pre-concentration was performed using a reversed phase (C(18)) column, and analytes were separated by back-flushing onto an analytical column (C(8)) with detection using QqQ MS. An option to increase MS resolution was exploited to minimize interference from endogenous compounds in the matrix. A better than unit mass resolution was used (Q1 full width half maximum (FWHM) = 0.2 Da and Q3 FWHM = 0.7 Da), which was as rugged as a unit resolution method, and improved signal/noise and better detection limits were achieved for the targeted basic pesticides. This method was applied to the determination of 11 pesticides, including methoxytriazine, chlorotriazines, chloroacetanilides, phenylurea and carbamate pesticides. The percentage recovery values for these pesticides using the online trapping column were within the range, 73-95%, with relative standard deviation (RSD) values <8.9%. The highest concentrations of these pesticides in wastewater effluents in County Cork, Ireland, were simazine (0.51 μg/L), prometon (0.14 μg/L), diuron (0.21 μg/L) and atrazine (0.19 μg/L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.