Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity, and reduced the signal-to-noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.
Extracellular ATP causes an increase in the concentration of cytoplasmic free calcium ([Ca2+]i) in bovine pulmonary-artery endothelial (BPAE) cells that results in the synthesis and release of prostacyclin (PGI2), a potent vasodilator and inhibitor of platelet aggregation. We show here that PGI2 release in BPAE cells correlates with the concentration of the fully ionized form of extracellular ATP (ATP4-) and not with the concentration of other ionic forms of ATP. Concentrations as low as 10 nM-ATP4- elicited an increase in PGI2 release [EC50 (concn. giving half-maximal stimulation) 3 microM] in BPAE cells incubated in an iso-osmotic medium, pH 7.4, lacking Ca2+ and Mg2+. When the pH or the Mg2+ concentration of the medium was varied so as to maintain a constant level of ATP4-, while varying the concentration of proton-ATP (HATP3-) or MgATP2- respectively, PGI2 release remained constant. An inhibitory effect of extracellular Mg2+ on PGI2 release could be attributed solely to a decrease in the concentration of ATP4-. In contrast with Mg2+, extracellular Ca2+ stimulated PGI2 release induced by ATP. Several results suggest that extracellular Ca2+ modulates PGI2 release by increasing Ca2+ uptake through an ATP(4-)-activated plasma-membrane channel. In BPAE cells incubated in Ca(2+)-free medium, ATP elicited a transient increase in [Ca2+]i that declined to the basal level within 60 s. In cells incubated in Ca(2+)-containing medium, ATP caused an increase in [Ca2+]i that had two components: a transient peak in [Ca2+]i (0-60 s) and a sustained increase in [Ca2+]i that was maintained for several minutes after ATP addition. Increasing the concentration of extracellular calcium from 0.25 mM to 10 mM had no effect on the transient rise in [Ca2+]i induced by ATP, but significantly enhanced the magnitude of the sustained increase in [Ca2+]i. Alterations in the magnitude of the sustained increase in [Ca2+]i would likely modulate PGI2 release, which was not complete until 2 min after ATP addition. Extracellular Ca2+ also stimulated PGI2 release induced by bradykinin. Bradykinin caused a sustained increase in [Ca2+]i in BPAE cells in the presence of extracellular Ca2+. Finally, the magnitude of PGI2 release induced by UTP, a more potent agonist than ATP, correlated with the concentration of extracellular fully ionized UTP (UTP4-). These findings support the hypothesis that nucleotide receptors in BPAE cells recognize the fully ionized form of ATP and UTP and are coupled to signal-transduction pathways involving the mobilization of intracellular Ca2+, the influx of extracellular Ca2+ and the subsequent release of PGI2.
Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma x glioma hybrid cell line (NG108-15 cells). The addition of > or = 1 microM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations > or = 500 microM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis of [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP gamma S, 2-methylthio ATP, beta, gamma-imidoATP or 3'-O-(4-benzoyl)benzoylATP, but not CTP, AMP, beta, gamma-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]P(i) or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.