As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable, and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles (LNPs) able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection. These LNPs, bearing low toxicity and long stability of >6 months, are ideal for continuous long-term dosing. Our discovery represents the first effective siRNA-containing LNPs for leukemia cells, which not only enables high-throughput siRNA screening with leukemia cells and difficult-to-transfect adherent cells but also paves the way for the development of therapeutic siRNA for leukemia treatment.
Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma x glioma hybrid cell line (NG108-15 cells). The addition of > or = 1 microM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations > or = 500 microM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis of [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP gamma S, 2-methylthio ATP, beta, gamma-imidoATP or 3'-O-(4-benzoyl)benzoylATP, but not CTP, AMP, beta, gamma-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]P(i) or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.
Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting "Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p<0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two shamoperated controls. However, when 32Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p<0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury. {Stroke 1991;22:495-498)A lthough stimulation of neuronal activity, in-/ \ eluding the process of neurotransmitter re-.Z \ _ lease, is one of the early events of cerebral ischemia, 1 the mechanism leading to irreversible tissue damage is not well understood. A number of neurotransmitters are known to transduce their signals through stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphates (PIFy. In turn, inositol trisphosphates can serve as second messengers for the mobilization of intracellular calcium stores.2 Therefore, stimulation of this cell signaling process may have important consequences toward explaining the alteration of calcium homeostasis underlying ischemic tissue damage.Previous studies by Ikeda et al 3 as well as those from our own laboratory 4 have indicated a rapid decrease in the levels of polyphosphoinositides (poly-PI) in rat brain after global cerebral ischemia induced by decapitation. Poly-PI were also degraded Received May 30, 1990; accepted December 13, 1990. following global cerebral ischemia induced by ligation of the common carotid arteries (CCAs) in gerbils. 5 Since these compounds are present in trace quantities in the brain, a more sensitive procedure to study the ischemia-induced breakdown of poly-PI can be achieved by prelabeling the brain with ^Pi 6 -7 or [ 3 H]inositol.8 Although the tracer technique has been used to examine poly-PI metabolism in a model of global ischemia, the response in brain tissue after a focal ischemic insult has not been examined. We used a rat model of focal cerebral ischemia to examine poly-PI metabolism after ligation of the middle cerebral artery (MCA). This model closely resembles ...
CRTH2 is one of the prostaglandin D₂ receptors and plays a proinflammatory role in allergic diseases. Gene expression markers in whole blood induced by CRTH2 activation have not previously been reported. Using microarray analyses of 54 675 genes, we revealed modest gene expression changes in human whole blood stimulated in vitro by a selective CRTH2 agonist, DK-PGD₂. Five genes were found to exhibit 1.5- to 2.6-fold changes in expression. The expression of Charcot-Leyden crystal protein/galectin-10 (CLC/Gal-10) in particular was consistently enhanced in human whole blood stimulated by DK-PGD₂, as confirmed by quantitative real-time polymerase chain reaction analyses. DK-PGD(2)-induced increases in blood CLC/Gal-10 mRNA levels were largely attenuated by the CRTH2 antagonist CAY10471.Thus, the DK-PGD₂-induced CLC/Gal-10 mRNA level can serve as a potential marker for monitoring pharmacodynamic effects of blood exposure to CRTH2 modulating agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.