An end-to-end development approach for space flight qualified additive manufacturing (AM) components is presented and demonstrated with a case study consisting of a system of five large, light-weight, topologically optimized components that serve as an engine mount in SpaceIL's GLPX lunar landing craft that will participate in the Google Lunar XPrize challenge. The development approach includes a preliminary design exploration intended to save numerical effort in order to allow efficient adoption of topology optimization and additive manufacturing in industry. The approach also addresses additive manufacturing constraints, which are not included in the topology optimization algorithm, such as build orientation, overhangs, and the minimization of support structures in the design phase. Additive manufacturing is carried out on the topologically optimized designs with powder bed laser technology and rigorous testing, verification, and validation exercises complete the development process.
Three case studies utilizing topology optimization and Additive Manufacturing for the development of space flight hardware are described. The Additive Manufacturing (AM) modality that was used in this work is powder bed laser based fusion. The case studies correspond to the redesign and manufacture of two heritage parts for a Surrey Satellite Technology LTD (SSTL) Technology Demonstrator Space Mission that are currently functioning in orbit (case studies 1 and 2), and a system of five components for the SpaceIL’s lunar launch vehicle planned for launch in the near future (case study 3). In each case, the nominal or heritage part has undergone topology optimization, incorporating the AM manufacturing constraints that include: minimization of support structures, ability to remove unsintered powder, and minimization of heat transfer jumps that will cause artifact warpage. To this end the topology optimization exercise must be coupled to the Additive Manufacturing build direction, and steps are incorporated to integrate the AM constraints. After design verification by successfully passing a Finite Element Analysis routine, the components have been fabricated and the AM artifacts and in-process testing coupons have undergone verification and qualification testing in order to deliver structural components that are suitable for their respective missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.