We apply convolutional neural networks (CNN) to the problem of image orientation detection in the context of determining the correct orientation (from 0, 90, 180, and 270 degrees) of a consumer photo. The problem is especially important for digitazing analog photographs. We substantially improve on the published state of the art in terms of the performance on one of the standard datasets, and test our system on a more difficult large dataset of consumer photos. We use Guided Backpropagation to obtain insights into how our CNN detects photo orientation, and to explain its mistakes.
Abstract. We describe latent factor probability models of human travel, which we learn from data. The latent factors represent interpretable properties: travel distance cost, desirability of destinations, and affinity between locations. Individuals are clustered into distinct styles of travel. The latent factors combine in a multiplicative manner, and are learned using Maximum Likelihood. We show that our models explain the data significantly better than histogrambased methods. We also visualize the model parameters to show information about travelers and travel patterns. We show that different individuals exhibit different propensity to travel large distances. We extract the desirability of destinations on the map, which is distinct from their popularity. We show that pairs of locations have different affinities with each other, and that these affinities are partly explained by travelers' preference for staying within national borders and within the borders of linguistic areas. The method is demonstrated on two sources of travel data: geotags from Flickr images, and GPS tracks from Shanghai taxis.
The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning experience, we here present abstracts of ten AI assignments from the 2019 session that are easily adoptable, playfully engaging, and flexible for a variety of instructor needs. Assignment specifications and supporting resources may be found at http: //modelai.gettysburg.edu.
We describe a method to segment rectangular objects that lie on a slightly textured background of an a-priori unknown colour. Our contribution consists of a fast and accurate background colour approximation method, a set of heuristics for accurate detection of rectangle sides, and procedures to generate imprecise hypotheses of rectangles, adjust hypotheses to fit the rectangles in the image, and verify or reject the hypotheses. Our algorithm is capable of detecting overlapping and touching objects such as photos, receipts, and business cards on a very small-sized preview scan image (79 by 109 pixels) on a coloured/textured background Canadian Conference on Computer and Robot Vision 978-0-7695-3153-3/08 $25.00
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.