The field of AI has changed significantly in the past couple of years and will likely continue to do so. Driven by a desire to expose our students to relevant and modern materials, we conducted two surveys, one of AI instructors and one of AI practitioners. The surveys were aimed at gathering infor-mation about the current state of the art of introducing AI as well as gathering input from practitioners in the field on techniques used in practice. In this paper, we present and briefly discuss the responses to those two surveys.
This issue of AI Magazine include five articles covering subjects of current concern to the AI education community. This editorial introduces those five articles.
In this column, we introduce the next AAAI/EAAI-2022 mentored undergraduate research challenge: AI-Assisted Game Design (AIAGD). We survey a number of AIAGD applications, provide references, and make suggestions for undergraduates to engage in this open-ended, creative research challenge.
In this paper we present work on a project funded by the National Science Foundation with a goal of unifying the Artificial Intelligence (AI) course around the theme of machine learning. Our work involves the development and testing of an adaptable framework for the presentation of core AI topics that emphasizes the relationship between AI and computer science. Several hands-on laboratory projects that can be closely integrated into an introductory AI course have been developed. We present an overview of one of the projects and describe the associated curricular materials that have been developed. The project uses machine learning as a theme to unify core AI topics in the context of the N-puzzle game. Games provide a rich framework to introduce students to search fundamentals and other core AI concepts. The paper presents several pedagogical possibilities for the N-puzzle game, the rich challenge it offers, and summarizes our experiences using it.
It is generally recognized that an undergraduate introductory Artificial Intelligence course is challenging to teach. This is, in part, due to the diverse and seemingly disconnected core topics that are typically covered. The paper presents work funded by the National Science Foundation to address this problem and to enhance the student learning experience in the course. Our work involves the development of an adaptable framework for the presentation of core AI topics through a unifying theme of machine learning. A suite of hands-on semester-long projects are developed, each involving the design and implementation of a learning system that enhances a commonly-deployed application. The projects use machine learning as a unifying theme to tie together the core AI topics. In this paper, we will first provide an overview of our model and the projects being developed and will then present in some detail our experiences with one of the projects-Web User Profiling which we have used in our AI class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.