Many studies on alpine skiing are limited to a few gates or collected data in controlled conditions. In contrast, it is more functional to have a sensor setup and a fast algorithm that can work in any situation, collect data, and distinguish alpine skiing activities for further analysis. This study aims to detect alpine skiing activities via smartphone inertial measurement units (IMU) in an unsupervised manner that is feasible for daily use. Data of full skiing sessions from novice to expert skiers were collected in varied conditions using smartphone IMU. The recorded data is preprocessed and analyzed using unsupervised algorithms to distinguish skiing activities from the other possible activities during a day of skiing. We employed a windowing strategy to extract features from different combinations of window size and sliding rate. To reduce the dimensionality of extracted features, we used Principal Component Analysis. Three unsupervised techniques were examined and compared: KMeans, Ward’s methods, and Gaussian Mixture Model. The results show that unsupervised learning can detect alpine skiing activities accurately independent of skiers’ skill level in any condition. Among the studied methods and settings, the best model had 99.25% accuracy.
This paper presents a novel approach for counting hand-performed activities using deep learning and inertial measurement units (IMUs). The particular challenge in this task is finding the correct window size for capturing activities with different durations. Traditionally, fixed window sizes have been used, which occasionally result in incorrectly represented activities. To address this limitation, we propose segmenting the time series data into variable-length sequences using ragged tensors to store and process the data. Additionally, our approach utilizes weakly labeled data to simplify the annotation process and reduce the time to prepare annotated data for machine learning algorithms. Thus, the model receives only partial information about the performed activity. Therefore, we propose an LSTM-based architecture, which takes into account both the ragged tensors and the weak labels. To the best of our knowledge, no prior studies attempted counting utilizing variable-size IMU acceleration data with relatively low computational requirements using the number of completed repetitions of hand-performed activities as a label. Hence, we present the data segmentation method we employed and the model architecture that we implemented to show the effectiveness of our approach. Our results are evaluated using the Skoda public dataset for Human activity recognition (HAR) and demonstrate a repetition error of ±1 even in the most challenging cases. The findings of this study have applications and can be beneficial for various fields, including healthcare, sports and fitness, human–computer interaction, robotics, and the manufacturing industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.