As an energy-intensive industry sector, the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality, an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges, this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate, that the proposed system can reduce specific carbon dioxide emissions by up to 60 %, while increasing specific energy demand by a maximum of 25 %. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C), temperature efficiency (Δξ = −0.003) and heat capacity flow ratio (ΔzHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study, high CO2 abatement costs of 295 €/t CO2-eq. were determined. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future.
The glass industry is facing increased challenges regarding climate protection targets and rising energy costs. The integration of renewable energy including conversion and storage is a key for both challenges in this energyintensive industrial sector, which has been mainly relying on fossil gas so far. The options considered to this point for reducing CO 2 emissions and switching to a renewable energy supply involve far-reaching changes of the established melting processes. This entails significant risks in terms of influences on glass quality and stable production volumes. The presented approach for the integration of a Power-to-Methane (PtM) system into the glass industry is a completely new concept and has not been considered in detail before. It allows the use of established oxyfuel melting processes, the integration of fluctuating renewable energy sources and a simultaneous reduction of CO 2 emissions by more than 78%. At the same time, natural gas purchases become obsolete. A techno-economic evaluation of the complete PtM process shows, that 1,76 e/m 3 or 1,26 e/kg synthetic natural gas are possible with renewable energy supply. Using electricity from the energy grid would require electricity prices < 0,126 e/kWh to allow cost competitive PtM processes in the glass industry. Such electricity prices could be achieved by electricity market-based optimization and operation of the PtM system. This operation strategy would require AI-based algorithms predicting availabilities and prices on future-based markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.