Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.
Soil water content (SWC) plays a key role in partitioning water and energy fluxes at the land surface and in controlling hydrologic fluxes such as groundwater recharge. Despite the importance of SWC, it is not yet measured in an operational way at larger scales. The aim of this study was to investigate the potential of wireless sensor network technology for the near‐real‐time monitoring of SWC at the field and headwater catchment scales using the recently developed wireless sensor network SoilNet. The forest catchment Wüstebach (∼27 ha) was instrumented with 150 end devices and 600 EC‐5 SWC sensors from the ECH2O series by Decagon Devices. In the period between August and November 2009, more than six million SWC measurements were obtained. The observed spatial variability corresponded well with results from previous studies. The very low scattering in the plots of mean SWC against SWC variance indicates that the sensor network data provide a more accurate estimate of SWC variance than discontinuous data from measurement campaigns, due, e.g., to fixed sampling locations and permanently installed sensors. The spatial variability in SWC at the 50‐cm depth was significantly lower than at 5 cm, indicating that the longer travel time to this depth reduced the spatial variability of SWC. Topographic features showed the strongest correlation with SWC during dry periods, indicating that the control of topography on the SWC pattern depended on the soil water status. Interpolation results indicated that the high sampling density allowed capture of the key patterns of SWC variation.
[1] Our understanding of short-and long-term dynamics of spatial soil moisture patterns is limited due to measurement constraints. Using new highly detailed data, this research aims to examine seasonal and event-scale spatial soil moisture dynamics in the topsoil and subsoil of the small spruce-covered Wüstebach catchment, Germany. To accomplish this, univariate and geo-statistical analyses were performed for a 1 year long 4-D data set obtained with the wireless sensor network SoilNet. We found large variations in spatial soil moisture patterns in the topsoil, mostly related to meteorological forcing. In the subsoil, temporal dynamics were diminished due to soil water redistribution processes and root water uptake. Topsoil range generally increased with decreasing soil moisture. The relationship between the spatial standard deviation of the topsoil soil moisture (SD ) and mean water content () showed a convex shape, as has often been found in humid temperate climate conditions. Observed scatter in topsoil SD () was explained by seasonal and event-scale SD () dynamics, possibly involving hysteresis at both time scales. Clockwise hysteretic SD () dynamics at the event scale were generated under moderate soil moisture conditions only for intense precipitation that rapidly wetted the topsoil and increased soil moisture variability controlled by spruce throughfall patterns. This hysteretic effect increased with increasing precipitation, reduced root water uptake, and high groundwater level. Intense precipitation on dry topsoil abruptly increased SD but only marginally increased mean soil moisture. This was due to different soil rewetting behavior in drier upslope areas (hydrophobicity and preferential flow caused minor topsoil recharge) compared with the moderately wet valley bottom (topsoil water storage), which led to a more spatially organized pattern. This study showed that spatial soil moisture patterns monitored by a wireless sensor network varied with depth, soil moisture content, seasonally, and within single wetting and drying episodes. This was controlled by multiple factors including soil properties, topography, meteorological forcing, vegetation, and groundwater.
Temporal stability (TS) of soil water content (SWC) has been observed throughout a wide range of spatial and temporal scales. Yet, the evidence with respect to the controlling factors on TS SWC remains contradictory or nonexistent. The objective of this work was to develop the first comprehensive review of methodologies to evaluate TS SWC and to present and analyze an inventory of published data. Statistical analysis of mean relative difference (MRD) data and associated standard deviations (SDRD) from 157 graphs in 37 publications showed a trend for the standard deviation of MRD (SDMRD) to increase with scale, as expected. The MRD followed generally the Gaussian distribution with R2 ranging from 0.841 to 0.998. No relationship between SDMRD and R2 was observed. The smallest R2 values were mostly found for negatively skewed and platykurtic MRD distributions. A new statistical model for temporally stable SWC fields was proposed. The analysis of the published data on seven measurement‐, terrain‐, and climate‐related potentially controlling factors of TS SWC suggested intertwined effects of controlling factors rather than single dominant factors. This calls for a focused research effort on the interactions and effects of measurement design, topography, soil, vegetation and climate on TS SWC. Research avenues are proposed which will lead to a better understanding of the TS phenomenon and ultimately to the identification of the underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.