Kinematic synergies (kSYN) provide an approach to quantify the covariation of joint motions and to explain the mechanisms underlying human motor behavior. A low-dimensional control strategy by means of the activation of a moderate number of kSYN would simplify the performance of complex motor tasks. The purpose of this study was to examine similarities between the kSYN of varying locomotion tasks: straight-line walking, walking a 90° spin turn and walking upstairs. Task-specific kSYN were extracted from full body kinematic recordings of 13 participants by principal component analysis. The first five kSYN accounting for most of the variance within each task were selected for further analysis following previous studies. The similarities between the kSYN of the three different locomotion tasks were quantified by calculating cosine similarities (SIM), as a vector-based similarity measure ranging from 0 (no similarity) to 1 (high similarity), between absolute principal component loading vectors. A SIM between two kSYN > 0.8 was interpreted as highly similar. Two to three highly similar kSYN were identified when comparing two individual tasks with each other. One kSYN, primarily characterized by anteversion and retroversion of the arms and legs, were found to be similar in all three tasks. Additional kSYN that occurred between individual tasks reflected mainly an upwards/downwards movement of the body or a countercyclical knee flexion/extension. The results demonstrate that the three investigated locomotion tasks are characterized by kSYN and that certain kSYN repeatedly occur across the three locomotion tasks. PCA yields kSYN which are in descent order according to their amount of total variance accounted for. Referring to the placing of a kSYN within the order as priorization, we found a change in priorization of repeatedly occurring kSYN across the individual tasks. The findings support the idea that movements can be efficiently performed through a flexible combination of a lower number of control-relevant variables.
Four-wheeled walkers or rollators are often used to assist older individuals in maintaining an independent life by compensating for muscle weakness and reduced movement stability. However, limited biomechanical studies have been performed to understand how rollator support affects posture and stability, especially when standing up and sitting down. Therefore, this study examined how stability and posture change with varying levels of rollator support and on an unstable floor. The aim was to collect comprehensive baseline data during standing up and sitting down in young participants. In this study, 20 able-bodied, young participants stood up and sat down both 1) unassisted and assisted using a custom-made robot rollator simulator under 2) full support and 3) touch support. Unassisted and assisted performances were analyzed on normal and unstable floors using balance pads with a compliant surface under each foot. Using 3D motion capturing and two ground-embedded force plates, we compared assistive support and floor conditions for movement duration, the relative timing of seat-off, movement stability (center of pressure (COP) path length and sway area), and posture after standing up (lower body sagittal joint angles) using ANOVA analysis. The relative event of seat-off was earliest under full support compared to touch and unassisted conditions under normal but not under unstable floor conditions. The duration of standing up and sitting down did not differ between support conditions on normal or unstable floors. COP path length and sway area during both standing up and sitting down were lowest under full support regardless of both floor conditions. Hip and knee joints were least flexed under full support, with no differences between touch and unassisted in both floor conditions. Hence, full rollator support led to increased movement stability, while not slowing down the movement, during both standing up and sitting down. During standing up, the full support led to an earlier seat-off and a more upright standing posture when reaching a stable stance. These results indicate that rollator support when handles are correctly aligned does not lead to the detrimental movement alterations of increased forward-leaning. Future research aims to verify these findings in older persons with stability and muscle weakness deficiencies.
The contextual-interference effect is a frequently examined phenomenon in motor skill learning but has not been extensively investigated in motor adaptation. Here, we first tested experimentally if the contextual-interference effect is detectable in force field adaptation regarding retention and spatial transfer, and then fitted state-space models to the data to relate the findings to the “forgetting-and-reconstruction hypothesis”. Thirty-two participants were divided into two groups with either a random or a blocked practice schedule. They practiced reaching to four targets and were tested 10 min and 24 h afterward for motor retention and spatial transfer on an interpolation and an extrapolation target, and on targets which were shifted 10 cm away. The adaptation progress was participant-specifically fitted with 4-slow-1-fast state-space models accounting for generalization and set breaks. The blocked group adapted faster (p = 0.007) but did not reach a better adaptation at practice end. We found better retention (10 min), interpolation transfer (10 min), and transfer to shifted targets (10 min and 24 h) for the random group (each p < 0.05). However, no differences were found for retention or for the interpolation target after 24 h. Neither group showed transfer to the extrapolation target. The extended state-space model could replicate the behavioral results with some exceptions. The study shows that the contextual-interference effect is partially detectable in practice, short-term retention, and spatial transfer in force field adaptation; and that state-space models provide explanatory descriptions for the contextual-interference effect in force field adaptation.
The transitions between sitting and standing have a high physical and coordination demand, frequently causing falls in older individuals. Rollators, or four-wheeled walkers, are often prescribed but can paradoxically increase fall risk. This study investigated how rollator support affects sit-to-stand and stand-to-sit movements. Twenty young participants stood up and sat down under three handle support conditions (unassisted, light touch, and full support). As increasing task demands may affect coordination, a challenging floor condition (balance pads) was included; this may also bridge the gap to older individuals. Full-body kinematics and ground reaction forces were recorded, reduced in dimensionality by principal component analyses, and clustered by k-means into movement strategies. Rollator support caused the participants to switch strategies, especially when their balance was challenged, but did not lead to support-specific strategies. Three strategies for sit-to-stand were found: forward leaning, vertical rise, and hybrid; two in the challenging condition (exaggerated forward and forward leaning). For stand-to-sit, three strategies were found: backward lowering, vertical lowering, and hybrid; two in the challenging condition (exaggerated forward and forward leaning). Hence, young individuals adjust their strategy selection to different conditions. Future studies may apply this methodology to older individuals to recommend safe strategies and ultimately reduce falls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.