Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO2 capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O2 storage capacity over 500 redox cycles at 900 °C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications.
Chemical-looping combustion (CLC) is a promising technology that utilizes metal oxides as oxygen carriers for the combustion of fossil fuels to CO 2 and H 2 O, with CO 2 readily sequestrated after the condensation of steam. Thermally stable and reactive metal oxides are desirable as oxygen carrier materials for the CLC processes. Here, we report the performance of Cu-based mixed oxides derived from hydrotalcite (also known as layered double hydroxides) precursors as oxygen carriers for the combustion of solid fuels. Two types of CLC processes were demonstrated, including chemical looping oxygen uncoupling (CLOU) and in situ gasification (iG-CLC) in the presence of steam. The Cu-based oxygen carriers showed high performance for the combustion of two solid fuels (a lignite and a bituminous coal), maintaining high thermal stability, fast reaction kinetics, and reversible oxygen release and storage over multiple redox cycles. Slight deactivation and sintering of the oxygen carrier occurred after redox cycles at an very high operation temperature of 985 °C. We expect that our material design strategy will inspire the development of better oxygen carrier materials for a variety of chemical looping processes for the clean conversion of fossil fuels with efficient CO 2 capture.
Hydrogen has been identified as one of the key elements to bolster longer-term climate neutrality and strategic autonomy for several major countries. Multiple road maps emphasize the need to accelerate deployment across its supply chain and utilization. Being one of the major contributors to global CO2 emissions, the transportation sector finds in hydrogen an appealing alternative to reach sustainable development through either its direct use in fuel cells or further transformation to sustainable fuels. This review summarizes the latest developments in hydrogen use across the major energy-consuming transportation sectors. Rooted in a systems engineering perspective, we present an analysis of the entire hydrogen supply chain across its economic, environmental, and social dimensions. Providing an outlook on the sector, we discuss the challenges hydrogen faces in penetrating the different transportation markets. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Chemical looping with oxygen uncoupling, a variant of chemical looping combustion, requires chemically and physically stable oxygen carriers over long‐term redox cycling. Copper‐based oxygen carriers are characterised by high oxygen release rates but experience sintering at high temperatures. The use of layered double hydroxides (LDHs), prepared via co‐precipitation, as oxygen carrier precursors has been shown to effectively limit deactivation of copper‐based mixed metal oxides (MMOs) over extended redox cycling. The LDH‐derived MMOs have highly dispersed metal oxide within a stable support; the high dispersion of metals is due to the LDH precursor structure. In this work, a fluidised bed reactor (FBR) was used to study the intrinsic kinetics of oxygen release from CuO/MgAl2O4 oxygen carriers synthesised via the LDH‐MMO design strategy. The long‐term performance of MMOs with higher loadings of CuO, calcined from LDHs with higher Cu contents, was also investigated using an FBR. The intrinsic kinetics were determined using a kinetic model incorporating an effectiveness factor. By minimising the effects of intra‐ and inter‐particle mass transfer, the activation energy and the pre‐exponential factor of the lower loading MMOs were determined to be 51 ± 3 kJ mol−1 and 0.0567 s−1, respectively. All MMOs showed excellent stability over 100 redox cycles in a thermogravimetric analyser. However, the pH during co‐precipitation of the LDHs affected the stability of the MMOs in an FBR. The MMOs calcined from LDHs synthesised at pH 9.5 disintegrated during operation, whilst those produced from LDHs synthesised at pH 11 maintained high conversion and physical integrity over 100 redox cycles. © 2023 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.