Abstract:We demonstrate a novel mechanism for low power optical detection and modulation in a slotted waveguide geometry filled with nonlinear electro-optic polymers. The nanoscale confinement of the optical mode, combined with its close proximity to electrical contacts, enables the direct conversion of optical energy to electrical energy, without external bias, via optical rectification, and also enhances electro-optic modulation. We demonstrate this process for power levels in the sub-milliwatt regime, as compared to the kilowatt regime in which optical nonlinear effects are typically observed at short length scales. Our results suggest that a new class of detectors based on nonlinear optics may be practical.
We demonstrate the generation of quantum-correlated photon pairs combined with the spectral filtering of the pump field by more than 95 dB on a single silicon chip using electrically tunable ring resonators and passive Bragg reflectors. Moreover, we perform the demultiplexing and routing of signal and idler photons after transferring them via an optical fiber to a second identical chip. Nonclassical two-photon temporal correlations with a coincidence-to-accidental ratio of 50 are measured without further off-chip filtering. Our system, fabricated with high yield and reproducibility in a CMOS-compatible process, paves the way toward large-scale quantum photonic circuits by allowing sources and detectors of single photons to be integrated on the same chip.
Although gigahertz-scale free-carrier modulators have been demonstrated in silicon, intensity modulators operating at terahertz speeds have not been reported because of silicon's weak ultrafast nonlinearity. We have demonstrated intensity modulation of light with light in a silicon-polymer waveguide device, based on the all-optical Kerr effect-the ultrafast effect used in four-wave mixing. Direct measurements of time-domain intensity modulation are made at speeds of 10 GHz. We showed experimentally that the mechanism of this modulation is ultrafast through spectral measurements, and that intensity modulation at frequencies in excess of 1 THz can be obtained. By integrating optical polymers through evanescent coupling to silicon waveguides, we greatly increase the effective nonlinearity of the waveguide, allowing operation at continuous-wave power levels compatible with telecommunication systems. These devices are a first step in the development of large-scale integrated ultrafast optical logic in silicon, and are two orders of magnitude faster than previously reported silicon devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.