Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH.
Functional impairment of HDL may contribute to the excess cardiovascular mortality experienced by patients with renal disease, but the effect of advanced renal disease on the composition and function of HDL is not well understood. Here, we used mass spectrometry and biochemical analyses to study alterations in the proteome and lipid composition of HDL isolated from patients on maintenance hemodialysis. We identified a significant increase in the amount of acute phase protein serum amyloid A1, albumin, lipoprotein-associated phospholipase A2, and apoC-III composing uremic HDL. Furthermore, uremic HDL contained reduced phospholipid and increased triglyceride and lysophospholipid. With regard to function, these changes impaired the ability of uremic HDL to promote cholesterol efflux from macrophages. In summary, the altered composition of HDL in renal disease seems to inhibit its cardioprotective properties. Assessing HDL composition and function in renal disease may help identify patients at increased risk for cardiovascular disease.
This article is available online at http://www.jlr.org more than the skin ( 1 ). Traditional cardiovascular risk factors, such as hypertension, dyslipidemia, and obesity, are more frequent in psoriatic patients ( 2-4 ). However, even after adjusting for these risk factors, psoriasis has been shown to be associated with a higher incidence of myocardial infarction, stroke, and cardiovascular mortality ( 3,5,6 ). In moderate to severe psoriasis, a signifi cantly deteriorated lipid profi le was observed compared with healthy controls, with higher values of low-density lipoprotein, triglycerides, and signifi cantly decreased HDL levels ( 7 ).Recent studies clearly demonstrated that infl ammation impairs reverse cholesterol transfer in vivo ( 8, 9 ), providing evidence that infl ammation impairs HDL function. Emerging evidence suggests that assessment of HDL plasma concentrations alone is insuffi cient and indicate that the quality, rather than the mere quantity, of HDL determines its potential benefi cial effects against atherosclerosis ( 10 ). HDL is a complex lipoprotein particle with a broad variety of functions, also exerting atheroprotective activity via effects on the endothelium and by potent antiinfl ammatory capabilities ( 11-13 ). Recent studies have identifi ed HDL-associated proteins to be involved in the regulation of lipid metabolism, complement activation, growth-factor secretion, and proteolysis (14)(15)(16)(17)(18)(19).Functional impairment of HDL may contribute to the increased cardiovascular mortality experienced by psoriatic patients, but the impact of psoriasis on the composition and function of HDL has not been assessed. As qualitative alterations of HDL seem to be linked with increased cardiovascular complications, we hypothesized that HDL from psoriatic patients displays altered protein cargo and lipid composition, thereby rendering HDL dysfunctional.Abstract Psoriasis, a chronic infl ammatory skin disease, has been linked to increased myocardial infarction and stroke. Functional impairment of HDL may contribute to the excess cardiovascular mortality of psoriatic patients. However, data available regarding the impact of psoriasis on HDL composition and function are limited. HDL from psoriasis patients and healthy controls was isolated by ultracentrifugation and shotgun proteomics, and biochemical methods were used to monitor changed HDL composition. We observed a signifi cant reduction in apoA-I levels of HDL from psoriatic patients, whereas levels of apoA-II and proteins involved in acute-phase response, immune response, and endopeptidase/protease inhibition were increased. Psoriatic HDL contained reduced phospholipid and cholesterol. With regard to function, these compositional alterations impaired the ability of psoriatic HDL to promote cholesterol effl ux from macrophages. Importantly, HDLcholesterol effl ux capability negatively correlated with psoriasis area and severity index. We observed that control HDL, as well as psoriatic HDL, inhibited dihydrorhodamine (DHR) oxidation to a similar...
Aim-Carbamylation of proteins through reactive cyanate has been demonstrated to predict an increased cardiovascular risk. Cyanate is formed in vivo by break-down of urea and at sites of inflammation by the phagocyte protein myeloperoxidase. Since myeloperoxidase (MPO) associates with high-density lipoprotein (HDL) in human atherosclerotic intima, we examined in the present study whether cyanate specifically targets HDL.Results-Mass spectrometry analysis revealed that protein carbamylation is a major posttranslational modification of HDL. The carbamyllysine content of lesion derived HDL was more Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts than 20-fold higher in comparison to 3-chlorotyrosine levels, a specific oxidation product of MPO. Notable, the carbamyllysine content of lesion-derived HDL was 5 to 8-fold higher when compared to lesion derived low-density lipoprotein (LDL) or total lesion protein and increased with lesion severity. Importantly, the carbamyllysine content of HDL, but not of LDL, correlated with levels of 3-chlorotyrosine, suggesting MPO mediated carbamylation in the vessel wall. Remarkably, one carbamyllysine residue per HDL associated apolipoprotein A-I was sufficient to induce cholesterol accumulation and lipid droplet formation in macrophages through a pathway requiring the HDL receptor scavenger receptor class B, type I. Conclusion-The present results raise the possibility that HDL carbamylation contributes to foam cell formation in atherosclerotic lesions.
Background A hallmark of heart failure is impaired cytoplasmic Ca2+ handling of cardiomyocytes. It remains unknown whether specific alterations in nuclear Ca2+ handling – via altered excitation-transcription coupling – contribute to the development and progression of heart failure. Methods and Results Using tissue and isolated cardiomyocytes from non-failing and failing human hearts, as well as mouse and rabbit models of hypertrophy and heart failure, we provide compelling evidence for structural and functional changes of the nuclear envelope and nuclear Ca2+ handling in cardiomyocytes as remodeling progresses. Increased nuclear size and less frequent intrusions of the nuclear envelope into the nuclear lumen indicated altered nuclear structure that could have functional consequences. In the (peri)nuclear compartment there was also reduced expression of Ca2+ pumps and ryanodine receptors, and increased expression of inositol-1,4,5-trisphosphate receptors, and differential orientation among these Ca2+ transporters. These changes were associated with altered nucleoplasmic Ca2+ handling in cardiomyocytes from hypertrophied and failing hearts, reflected as increased diastolic Ca2+ levels with diminished and prolonged nuclear Ca2+ transients and slowed intranuclear Ca2+ diffusion. Altered nucleoplasmic Ca2+ levels were translated to higher activation of nuclear Ca2+/calmodulin-dependent protein kinase II and nuclear export of histone deacetylases. Importantly, the nuclear Ca2+ alterations occurred early during hypertrophy and preceded the cytoplasmic Ca2+ changes that are typical of heart failure. Conclusions During cardiac remodeling, early changes of cardiomyocyte nuclei cause altered nuclear Ca2+ signaling implicated in hypertrophic gene program activation. Normalization of nuclear Ca2+ regulation may, therefore, be a novel therapeutic approach for preventing adverse cardiac remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.