The National Academy of Sciences (NAS) Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde proposed a "roadmap" for reform and improvement of the Agency's risk assessment process. Specifically, it called for development of a transparent and defensible methodology for weight-of-evidence (WoE) assessments. To facilitate development of an improved process, we developed a white paper that reviewed approximately 50 existing WoE frameworks, seeking insights from their variations and nominating best practices for WoE analyses of causation of chemical risks. Four phases of WoE analysis were identified and evaluated in each framework: (1) defining the causal question and developing criteria for study selection, (2) developing and applying criteria for review of individual studies, (3) evaluating and integrating evidence and (4) drawing conclusions based on inferences. We circulated the draft white paper to stakeholders and then held a facilitated, multi-disciplinary invited stakeholder workshop to broaden and deepen the discussion on methods, rationales, utility and limitations among the surveyed WoE frameworks. The workshop developed recommendations for improving the conduct of WoE evaluations. Based on the analysis of the 50 frameworks and discussions at the workshop, best practices in conducting WoE analyses were identified for each of the four phases. Many of these best practices noted from the analysis and workshop could be implemented immediately, while others may require additional refinement as part of the ongoing discussions for improving the scientific basis of chemical risk assessments.
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives.Disclaimer: Any statements, opinions, or conclusions contained herein do not necessarily represent the opinions, statements, or conclusions of EPA, NIEHS, NIH, or the U.S. Government.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.