Typha is an iconic wetland plant found worldwide. Hybridization and anthropogenic disturbances have resulted in large increases in Typha abundance in wetland ecosystems throughout North America at a cost to native floral and faunal biodiversity. As demonstrated by three regional case studies, Typha is capable of rapidly colonizing habitats and forming monodominant vegetation stands due to traits such as robust size, rapid growth rate, and rhizomatic expansion. Increased nutrient inputs into wetlands and altered hydrologic regimes are among the principal anthropogenic drivers of Typha invasion. Typha is associated with a wide range of negative ecological impacts to wetland and agricultural systems, but also is linked with a variety of ecosystem services such as bioremediation and provisioning of biomass, as well as an assortment of traditional cultural uses. Numerous physical, chemical, and hydrologic control methods are used to manage invasive Typha, but results are inconsistent and multiple methods and repeated treatments often are required. While this review focuses on invasive Typha in North America, the literature cited comes from research on Typha and other invasive species from around the world. As such, many of the underlying concepts in this review are relevant to invasive species in other wetland ecosystems worldwide.
Abstract. Depressional wetlands are productive and unique ecosystems found around the world. Their value is due, in part, to their dynamic nature, in which water levels fluctuate in response to climate, occasionally drying out. However, many wetlands have been altered by consolidation drainage, where multiple, smaller wetlands are drained into fewer, larger, wetlands causing higher water levels. We evaluated whether current (2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010) water surface areas were greater than historical water surface areas of 141 randomly selected semipermanent and permanent wetlands across the Prairie Pothole Region of North Dakota, USA. We also evaluated whether differences between historical and current hydrology of these wetlands were attributable to consolidation drainage. For each of these wetlands, we digitized water surface areas from aerial photography during historical and current eras. Our results indicated that water surface areas are currently 86% greater in sample wetlands than they were historically and that differences can be attributed to consolidation drainage. Water surface areas of consolidated wetlands in extensively drained landscapes were 197% greater than those with no drainage and now require more extreme drought conditions to dry out. Wetlands in extensively drained catchments were larger, dry out less frequently, and have more surface-water connections to other wetlands via ditches. These factors make conditions more favorable for the presence of fish that decrease abundances of aquatic invertebrates and reduce the productivity and quality of these wetlands for many species. Our results support the idea that intact wetlands serve an important role in water storage and groundwater recharge and reduce down-stream runoff.
AяѠѡџюѐѡ.-The continental scaup population (Lesser [Aythya affi nis] and Greater [A. marila] combined) has declined markedly since 1978. One hypothesis for the population decline states that reproductive success has decreased because female scaup are arriving on breeding areas in poorer body condition than they did historically (i.e. spring condition hypothesis). We tested one aspect of that hypothesis by comparing body mass and nutrient reserves (lipid, protein, and mineral) of Lesser Scaup at four locations (Louisiana, Illinois, Minnesota, and Manitoba) between the 1980s and 2000s. We found that mean body mass and lipid and mineral reserves of females were 80.0, 52.5, and 3.0 g higher, respectively, in the 2000s than in the 1980s in Louisiana; similarly, body mass and lipid and mineral reserves of males were 108.8, 72.5, and 2.5 g higher, respectively. In Illinois, mean body mass and lipid reserves of females were 88.6 and 56.5 g higher, respectively, in the 2000s than in the 1980s; similarly, body mass and lipid and mineral reserves of males were 80.6, 76.0, and 2.7 g higher, respectively. Mean body mass of females were 58.5 and 58.9 g lower in the 2000s than in the 1980s in Minnesota and Manitoba, respectively; mean body mass of males, similarly, were 40.7 g lower in Minnesota. Mean lipid reserves of females in the 2000s were 28.8 and 27.8 g lower than those in the 1980s in Minnesota and Manitoba, respectively. Mean mineral reserves of females in the 2000s were 3.2 g lower than those in the 1980s in Manitoba. Consequently, females arriving to breed in Manitoba in the 2000s had accumulated lipid reserves for 4.1 fewer eggs and mineral reserves for 0.8 fewer eggs than those arriving to breed there in the 1980s. Accordingly, our results are consistent with the spring condition hypothesis and suggest that female body condition has declined, as refl ected by decreases in body mass, lipids, and mineral reserves that could cause reductions in reproductive success and ultimately a population decline.
Management of lesser scaup (Aythya affinis) has been hindered by access to reliable data on population trajectories and vital rates. We conducted a Bayesian analysis of historical bandrecovery data throughout North America to estimate annual survival and recovery rates for juvenile and adult male and female lesser scaup to determine if increasing harvest or declining survival rates have contributed to population changes and to determine if harvest has been primarily additive or compensatory. Annual recovery rates were low, ranging from 1% to 4% for adults and 2% to 10% for juveniles during most years, with trend models indicating that recovery rates have declined through time for all age-sex classes. Annual survival (mid-Aug to mid-Aug) averaged 0.402 (ŝ 0.043) for juvenile males, 0.416 (ŝ 0.067) for juvenile females, 0.689 (ŝ 0.109) for adult males, and 0.602 (ŝ 0.115) for adult females, whereŝ represents an estimate of annual process variation in each survival rate. Annual survival rates exhibited no evidence of long-term declines or negative correlations with annual recovery rates (i.e., an index of harvest intensity) for any age-sex class, suggesting that declining fecundity was the most likely explanation for population declines during . We conclude that hunting mortality played a minor role in affecting population dynamics of lesser scaup and waterfowl managers could take a less cautious approach in managing harvest, especially if recruiting or maintaining waterfowl hunters are viewed as important management objectives. Ó 2016 The Wildlife Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.