One approach to site-specific weed control is to map weeds within a field and then divide the field area into smaller grid units. The decision to apply a herbicide to individual grid units, or decision units, is made by using yield loss models to establish an economic threshold level. However, decision units often contain weed populations with aggregated distributions. Many yield loss models have not considered this because experiments dealing with weed–crop competition typically assume uniform weed distributions. Therefore, these models may overestimate yield losses. Field experiments conducted in 1999 and 2000 compared the effects of common ragweed having a uniform distribution vs. an aggregated distribution on soybean seed yield, moisture content, and dockage. Field experiment data were used to calculate and compare economic thresholds for both distributions. Economic thresholds that considered drying costs and dockage also were compared. There was no significant difference inIparameters (yield loss as density approaches zero) between the two ragweed distributions in either year. Seed moisture content and dockage increased with increasing common ragweed densities, but increases were not significant at the break-even yield loss level. Economic threshold values were similar for both distributions with differences between aggregated and uniform of 0.14 and 0.01 plants m−2in 1999 and 2000, respectively. The economic threshold values were reduced by 0.01 to 0.06 plants m−2when drying costs and dockage were considered.
Robinson, M. A., Cowbrough, M. J., Sikkema, P. H. and Tardif, F. J. 2013. Winter wheat (Triticum aestivum L.) tolerance to mixtures of herbicides and fungicides applied at different timings. Can. J. Plant Sci. 93: 491–501. Farmers commonly tank-mix herbicides and fungicides to reduce application costs. In the spring of 2008, there were reports of winter wheat injury with the application of herbicide–fungicide tank-mixes early in the growing season. This study was established to determine the tolerance of winter wheat to herbicide–fungicide mixtures as influenced by time of application. Field studies were conducted at four Ontario locations in 2009 and 2010 with three herbicides and four fungicides. Herbicide–fungicide tank-mixes were applied early, under cold conditions, and late at growth stage Zadoks 37–39. Dichlorprop/2,4-D mixed with tebuconazole caused up to 15% injury when applied early and up to 29% injury when applied late. Bromoxynil/MPCA mixed with tebuconazole injured wheat up to 15% when applied early but only 10% when applied late. Other herbicide and fungicide mixes caused a lower level of injury. Visible injury was transient and did not reduce winter wheat yields. The likelihood of tank-mixes causing injury was greater when they were applied late. The fungicide tebuconazole caused the highest level of injury when mixed with herbicides and injury was particularly high with dichlorprop/2,4-D.
Multiple herbicide-resistant populations of horseweed [Conyza canadensis (L.) Cronquist] continue to spread rapidly throughout Ontario, notably in areas where no-till soybean [Glycine max (L.) Merr.] is grown. The occurrence of multiple herbicide resistance within these populations suggests that the future role of herbicide tank mixtures as a means of control will be limited. An integrated weed management strategy utilizing complementary selection pressures is needed to reduce the selection intensity of relying solely on herbicides for control. Field studies were conducted in 2018 and 2019 to test the hypothesis: if fall-seeded cereal rye (Secale cereale L.) can reduce C. canadensis seedling density and suppress seedling growth, then the interaction(s) of complementary selection pressures of tillage, cereal rye, and herbicides would improve the level of C. canadensis control. Laboratory studies were conducted to determine whether the allelopathic compound 2-benzoxazolinone (BOA) affected the root development of C. canadensis seedlings. The interactions observed among multiple selection pressures of tillage, cereal rye, and herbicides were inconsistent between the 2 yr of study. A monoculture of cereal rye seeded in the fall, however, did reduce seedling height and biomass of C. canadensis consistently, but not density. This reduction in seedling height and biomass was likely caused by the allelopathic compound BOA, which reduced seedling root development. Control of C. canadensis seedlings in the spring required the higher registered rates of dicamba or saflufenacil. The addition of shallow fall tillage and the presence of cereal rye did not improve the variability in control observed notably with 2,4-D or the lower rates of saflufenacil or dicamba. With the implementation of complementary weed management strategies, environmental variables in any given year will likely have a direct influence on whether these interactions are additive or synergistic.
Various preemergence (PRE), PRE followed by postemergence (POST), and POST weed control options for conventional soybean were evaluated. More than 90% control of selected weed species were observed for most treatments. However, weed interference in plots treated with S-metolachlor + metribuzin or S-metolachlor + metribuzin + cloransulam-methyl resulted in reduced soybean yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.