A novel technique involving radiolabeled monoclonal antibodies was used to characterize and compare the expression of E- and P-selectin on unstimulated, histamine-challenged, and endotoxin-challenged endothelial cells in various tissues of the mouse. Under unstimulated conditions, E-selectin was absent in all organs, but significant expression of P-selectin was observed in several organs. Histamine induced a rapid time-dependent upregulation of P-selectin, with the largest responses observed in mesentery and lung. Significant fold elevations in P-selectin expression occurred as early as 5 minutes after the histamine injection and remained elevated up to 1 hour. Histamine-induced P-selectin upregulation was inhibited by the H
1
receptor antagonist diphenhydramine, whereas the H
2
receptor antagonist cimetidine had no effect. Endotoxin (lipopolysaccharide [LPS]) also induced a time-dependent expression of P-selectin that reached a maximum between 4 and 8 hours after endotoxin administration. LPS-induced upregulation of P-selectin was greatest in heart and stomach, which exhibited insignificant constitutive expression of P-selectin. LPS also induced a time-dependent upregulation of E-selectin, with maximal expression occurring 3 to 5 hours after intraperitoneal administration. The lung and small intestine exhibited the largest responses to LPS challenge. Histamine administration did not affect E-selectin expression in any tissue. E- and P-selectin–deficient mice were used to test the specificity of monoclonal antibody binding in unstimulated, histamine-challenged, and LPS-stimulated tissues. Vascular binding of the radiolabeled E-selectin and P-selectin monoclonal antibodies was not observed in the respective deficient mice. These findings suggest that P-selectin is constitutively expressed on vascular endothelium in some tissues of the mouse and that there are significant regional differences in the magnitude and time course of histamine- and endotoxin-induced P-selectin expression. In contrast, E-selectin appears to be absent on unstimulated vascular endothelium but is upregulated within 3 hours after the administration of endotoxin in most tissues.
Interleukin (IL)-13 has recently been shown to play important and unique roles in asthma, parasite immunity, and tumor recurrence. At least two distinct receptor components, IL-4 receptor (R)α and IL-13Rα1, mediate the diverse actions of IL-13. We have recently described an additional high affinity receptor for IL-13, IL-13Rα2, whose function in IL-13 signaling is unknown. To better appreciate the functional importance of IL-13Rα2, mice deficient in IL-13Rα2 were generated by gene targeting. Serum immunoglobulin E levels were increased in IL-13Rα2−/− mice despite the fact that serum IL-13 was absent and immune interferon γ production increased compared with wild-type mice. IL-13Rα2–deficient mice display increased bone marrow macrophage progenitor frequency and decreased tissue macrophage nitric oxide and IL-12 production in response to lipopolysaccharide. These results are consistent with a phenotype of enhanced IL-13 responsiveness and demonstrate a role for endogenous IL-13 and IL-13Rα2 in regulating immune responses in wild-type mice.
These data show the expression of a novel B7-like molecule on murine ECs that is mediated by IFN-alpha, -beta, and -gamma, and suggest a potential pathway by which ECs may modulate T-cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.