Cloning of MAO (monoamine oxidase) A and B has demonstrated unequivocally that these enzymes are made up of different polypeptides, and our understanding of MAO structure, regulation, and function has been significantly advanced by studies using their cDNA. MAO A and B genes are located on the X-chromosome (Xp11.23) and comprise 15 exons with identical intron-exon organization, which suggests that they are derived from the same ancestral gene. MAO A and B knockout mice exhibit distinct differences in neurotransmitter metabolism and behavior. MAO A knock-out mice have elevated brain levels of serotonin, norephinephrine, and dopamine and manifest aggressive behavior similar to human males with a deletion of MAO A. In contrast, MAO B knockout mice do not exhibit aggression and only levels of phenylethylamine are increased. Mice lacking MAO B are resistant to the Parkinsongenic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Both MAO A and B knock-out mice show increased reactivity to stress. These knockout mice are valuable models for investigating the role of monoamines in psychoses and neurodegenerative and stress-related disorders.
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators for sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha-proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 microg l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 microg l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 microg l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction in the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 microg l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morpho-type actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 microg l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 microg l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 microg l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 microg l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.