Part of the ventral temporal lobe is thought to be critical for face perception, but what determines this specialization remains unknown. We present evidence that expertise recruits the fusiform gyrus 'face area'. Functional magnetic resonance imaging (fMRI) was used to measure changes associated with increasing expertise in brain areas selected for their face preference. Acquisition of expertise with novel objects (greebles) led to increased activation in the right hemisphere face areas for matching of upright greebles as compared to matching inverted greebles. The same areas were also more activated in experts than in novices during passive viewing of greebles. Expertise seems to be one factor that leads to specialization in the face area.
Sensitivity to configural changes in face processing has been cited as evidence for face-exclusive mechanisms. Alternatively, general mechanisms could be fine-tuned by experience with homogeneous stimuli. We tested sensitivity to configural transformations for novices and experts with nonface stimuli ("Greebles"). Parts of transformed Greebles were identified via forced-choice recognition. Regardless of expertise level, the recognition of parts in the Studied configuration was better than in isolation, suggesting an object advantage. For experts, recognizing Greeble parts in a Transformed configuration was slower than in the Studied configuration, but only at upright. Thus, expertise with visually similar objects, not faces per se, may produce configural sensitivity.
How do we recognize objects despite differences in their retinal projections when they are seen at different orientations? Marr and Nishihara (1978) proposed that shapes are represented in memory as structural descriptions in objectcentered coordinate systems, so that an object is represented identically regardless of its orientation. An alternative hypothesis is that an object is represented in memory in a single representation corresponding to a canonical orientation, and a mental rotation operation transforms an input shape into that orientation before input and memory are compared. A third possibility is that shapes are stored in a set of representations, each corresponding to a different orientation. In four experiments, subjects studied several objects each at a single orientation, and were given extensive practice at naming them quickly, or at classifying them as normal or mirror-reversed, at several orientations. At first, response times increased with departure from the study orientation, with a slope similar to those obtained in classic mental rotation experiments. This suggests that subjects made both judgments by mentally transforming the orientation of the input shape to the one they had initially studied. With practice, subjects recognized the objects almost equally quickly at all the familiar orientations. At that point they were probed with the same objects appearing at novel orientations. Response times for these probes increased with increasing disparity from the previously trained orientations. This indicates that subjects had stored representations of the shapes at each of the practice orientations and recognized shapes at the new orientations by rotating them to one of the stored orientations. The results are consistent with a hybrid of the second (mental transformation) and third (multiple view) hypotheses of shape recognition: input shapes are transformed to a stored view, either the one at the nearest orientation or one at a canonical orientation. Interestingly, when mirrorimages of trained shapes were presented for naming, subjects took the same time at all orientations. This suggests that mental transformations of orientation can take the shortest path of rotation that will align an input shape and its memorized counterpart, in this case a rotation in depth about an axis in the picture plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.