We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.
Many people have argued that the evolution of the human language faculty cannot be explained by Darwinian natural selection. Chomsky and Gould have suggested that language may have evolved as the by-product of selection for other abilities or as a consequence of as-yet unknown laws of growth and form. Others have argued that a biological specialization for grammar is incompatible with every tenet of Darwinian theory – that it shows no genetic variation, could not exist in any intermediate forms, confers no selective advantage, and would require more evolutionary time and genomic space than is available. We examine these arguments and show that they depend on inaccurate assumptions about biology or language or both. Evolutionary theory offers clear criteria for when a trait should be attributed to natural selection: complex design for some function, and the absence of alternative processes capable of explaining such complexity. Human language meets these criteria: Grammar is a complex mechanism tailored to the transmission of propositional structures through a serial interface. Autonomous and arbitrary grammatical phenomena have been offered as counterexamples to the position that language is an adaptation, but this reasoning is unsound: Communication protocols depend on arbitrary conventions that are adaptive as long as they are shared. Consequently, language acquisition in the child should systematically differ from language evolution in the species, and attempts to analogize them are misleading. Reviewing other arguments and data, we conclude that there is every reason to believe that a specialization for grammar evolved by a conventional neo-Darwinian process.
How do we recognize objects despite differences in their retinal projections when they are seen at different orientations? Marr and Nishihara (1978) proposed that shapes are represented in memory as structural descriptions in objectcentered coordinate systems, so that an object is represented identically regardless of its orientation. An alternative hypothesis is that an object is represented in memory in a single representation corresponding to a canonical orientation, and a mental rotation operation transforms an input shape into that orientation before input and memory are compared. A third possibility is that shapes are stored in a set of representations, each corresponding to a different orientation. In four experiments, subjects studied several objects each at a single orientation, and were given extensive practice at naming them quickly, or at classifying them as normal or mirror-reversed, at several orientations. At first, response times increased with departure from the study orientation, with a slope similar to those obtained in classic mental rotation experiments. This suggests that subjects made both judgments by mentally transforming the orientation of the input shape to the one they had initially studied. With practice, subjects recognized the objects almost equally quickly at all the familiar orientations. At that point they were probed with the same objects appearing at novel orientations. Response times for these probes increased with increasing disparity from the previously trained orientations. This indicates that subjects had stored representations of the shapes at each of the practice orientations and recognized shapes at the new orientations by rotating them to one of the stored orientations. The results are consistent with a hybrid of the second (mental transformation) and third (multiple view) hypotheses of shape recognition: input shapes are transformed to a stored view, either the one at the nearest orientation or one at a canonical orientation. Interestingly, when mirrorimages of trained shapes were presented for naming, subjects took the same time at all orientations. This suggests that mental transformations of orientation can take the shortest path of rotation that will align an input shape and its memorized counterpart, in this case a rotation in depth about an axis in the picture plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.