Surface-enhanced Raman spectroscopy (SERS) underpins a wide range of commercial and fundamental applications. SERS often relies on ligands, usually thiols, bound to a noble metal surface. The difficulty of straightforward thiol synthesis combined with their instability on surfaces highlights the need for alternative ligand design. We present the first example of SERS utilizing N-heterocyclic carbene ligands. A general three step synthesis is presented for functionalized NHC-CO adducts. These ligands are deposited on SERS-active gold film-over-nanosphere substrates (AuFONs) in solvent-free and base-free conditions, which prevents fouling. The resulting films are found to be robust and capable of postsynthetic modifications.
Surface functionalization is an essential component of most applications of noble-metal surfaces. Thiols and amines are traditionally employed to attach molecules to noble-metal surfaces, but they have limitations. A growing body of research, however, suggests that N-heterocyclic carbenes (NHCs) can be readily employed for surface functionalization with superior chemical stability compared with thiols. We demonstrate the power of surface-enhanced Raman scattering combined with theory to present a comprehensive picture of NHC binding to gold surfaces. In particular, we synthesize a library of NHC isotopologues and use surface-enhanced Raman scattering to record the vibrational spectra of these NHCs while bound to gold surfaces. Our experimental data are compared with first-principles theory, yielding numerous new insights into the binding of NHCs to gold surfaces. In addition to these insights, we expect our approach to be a general method for probing the local surface properties of NHC-functionalized surfaces for their expanding use in sensing applications.
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
Nanoporous metal films are promising substrates for surfaced-enhanced Raman scattering (SERS) measurement, owing to their homogeneity, large surface area, and abundant hot-spots. Herein, a facile procedure was developed to fabricate nanoporous Ag film on various substrate surfaces. Thermally deposited Ag film was first treated with O2 plasma, resulting in porous Ag/AgxO film (AgxO-NF) with nanoscale feature. Sodium citrate was then used to reduce AgxO to Ag, forming nanoporous Ag film (AgNF) with similar morphology. The AgNF substrate demonstrates 30-fold higher Raman intensity than Ag film over polystyrene nanospheres (d = 600 nm) using 4-mercaptobenzoic acid (4-MBA) as the sensing molecule. Comparing with ordinary Raman measurement on 4-MBA solution, an enhancement factor of ∼6 × 10(6) was determined for AgNF. The AgNF substrate was evaluated for benzoic acid, 4-nitrophenol, and 2-mercaptoethanesulfonate, showing high SERS sensitivity for chemicals that bind weakly to Ag surface and molecules with relatively small Raman cross section at micromolar concentration. In addition to its simplicity, the procedure can be applied to various materials such as transparency film, filter paper, hard polystyrene film, and aluminum foil, revealing similar Raman sensitivity. By testing the durability of the substrate, we found that the AgxO films can be stored in ambient conditions for more than 90 days and still deliver the same SERS intensity if the films are treated with sodium citrate before use. These results demonstrate the advantage of the proposed approach for mass production of low-cost, sensitive, and durable SERS substrates. The transferable nature of these AgNF to different flexible surfaces also allows their easy integration with other sensing schemes.
A surface-enhanced Raman scattering (SERS) method, based on functionalized silver colloids, is developed for the detection of uranyl ions that yields a limit of detection of 24 ppb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.