Surface functionalization is an essential component of most applications of noble-metal surfaces. Thiols and amines are traditionally employed to attach molecules to noble-metal surfaces, but they have limitations. A growing body of research, however, suggests that N-heterocyclic carbenes (NHCs) can be readily employed for surface functionalization with superior chemical stability compared with thiols. We demonstrate the power of surface-enhanced Raman scattering combined with theory to present a comprehensive picture of NHC binding to gold surfaces. In particular, we synthesize a library of NHC isotopologues and use surface-enhanced Raman scattering to record the vibrational spectra of these NHCs while bound to gold surfaces. Our experimental data are compared with first-principles theory, yielding numerous new insights into the binding of NHCs to gold surfaces. In addition to these insights, we expect our approach to be a general method for probing the local surface properties of NHC-functionalized surfaces for their expanding use in sensing applications.
The remarkable resilience of N-heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces.D espite rapid progress using deposition from free or CO 2 -protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups,s uch as alcohols and amines,p articularly on larger nanoparticles.H ere,w es ynthe-sizeN HC-functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents,e nabling otherwise difficult functional groups to be appended to the carbene.T he resilience of the NHC À Au bond allows for multi-step post-synthetic modification. Beginning with the nitro-NHC,w ef orm an amine-NHC terminated surface,w hichf urther undergoes amide coupling with carboxylic acids.T he simplicity of this approach, its compatibility with aqueous nanoparticle solutions,a nd its ability to yield protic functionality,g reatly expands the potential of NHC-functionalized noble metal surfaces.
The exceptional stability of N-heterocyclic carbene (NHC) monolayers on gold surfaces and nanoparticles (AuNPs) is enabling new and diverse applications from catalysis to biomedicine. Our understanding of NHC reactivity at...
N-heterocyclic carbenes (NHCs) have emerged as versatile and robust ligands for noble metal surface modifications due to their ability to form compact, self-assembled monolayers. Despite a growing body of research, previous NHC surface modification schemes have employed just two structural motifs: the benzimidazolium NHC and the imidazolium NHC. However, different NHC moieties, including saturated NHCs, are often more effective in homogenous catalysis chemistry than these aforementioned motifs and may impart numerous advantages to NHC surfaces, such as increased stability and access to chiral groups. This work explores the preparation and stability of NHC-coated gold surfaces using imidazolium and imidazolinium NHC ligands. X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy demonstrate the attachment of NHC ligands to the gold surface and show enhanced stability of imidazolinium compared to the traditional imidazolium under harsh acidic conditions.
The ability to functionalize gold nanoparticle surfaces with target ligands is integral to developing effective nanosystems for biomedical applications, ranging from point-of-care diagnostic devices to site-specific cancer therapies. By forming strong covalent bonds with gold, thiol functionalities can easily link molecules of interest to nanoparticle surfaces. Unfortunately, thiols are inherently prone to oxidative degradation in many biologically relevant conditions, which limits their broader use as surface ligands in commercial assays. Recently, N -heterocyclic carbene (NHC) ligands emerged as a promising alternative to thiols since initial reports demonstrated their remarkable stability against ligand displacement and stronger metal–ligand bonds. This work explores the long-term stability of NHC-functionalized gold nanoparticles suspended in five common biological media: phosphate-buffered saline, tris-glycine potassium buffer, tris-glycine potassium magnesium buffer, cell culture media, and human serum. The NHCs on gold nanoparticles were probed with surface-enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS). SERS is useful for monitoring the degradation of surface-bound species because the resulting vibrational modes are highly sensitive to changes in ligand adsorption. Our measurements indicate that imidazole-based NHCs remain stable on gold nanoparticles over the 21 days of examination in all tested environments, with no observed change in the molecule’s SERS signature, XPS response, or UV–vis plasmon band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.