A bistridentate RuII-polypyridine complex [Ru(bqp)2]2+ (bqp = 2,6-bis(8'-quinolinyl)pyridine) has been prepared, which has a coordination geometry much closer to a perfect octahedron than the typical Ru(terpyridine)2-type complex. Thus, the complex displays a 3.0 mus lifetime of the lowest excited metal-to-ligand charge transfer (3MLCT) state at room temperature. This is, to the best of our knowledge, the longest MLCT state lifetime reported for a RuII-polypyridyl complex at room temperature. The structure allows for the future construction of rod-like, isomer-free molecular arrays by substitution of donor and acceptor moieties on the central pyridine units. This makes it a promising photosensitizer for applications in molecular devices for artificial photosynthesis and molecular electronics.
A series of bistridentate ruthenium(II) polypyridyl-type complexes based on the novel 2,6-di(quinolin-8-yl)pyridine (dqp) ligand have been synthesized and their photophysical properties have been studied. The complexes are amenable to substitution in the 4-position of the central pyridine with conserved quasi-C2v symmetry, which allows for extension to isomer-free, rod-like molecular arrays for vectorial control of electron and energy transfer. DFT calculations performed on the parent [Ru(dqp) 2](2+) complex (1) predicted a more octahedral structure than in the typical bistridentate complex [Ru(tpy)2](2+) (tpy is 2,2':6',2"-terpyridine) thanks to the larger ligand bite angle, which was confirmed by X-ray crystallography. A strong visible absorption band, with a maximum at 491 nm was assigned to a metal-to-ligand charge transfer (MLCT) transition, based on time-dependent DFT calculations. 1 shows room temperature emission (Phi = 0.02) from its lowest excited ((3)MLCT) state that has a very long lifetime (tau = 3 micros). The long lifetime is due to a stronger ligand field, because of the more octahedral structure, which makes the often dominant activated decay via short-lived metal-centered states insignificant also at elevated temperatures. A series of complexes based on dqp with electron donating and/or accepting substituents in the 4-position of the pyridine was prepared and the properties were compared to those of 1. An unprecedented (3)MLCT state lifetime of 5.5 micros was demonstrated for the homoleptic complex based on dqpCO2Et. The favorable photosensitizer properties of 1, such as a high extinction coefficient, high excited-state energy and long lifetime, and tunable redox potentials, are maintained upon substitution. In addition, the parent complex 1 is shown to be remarkably photostable and displays a high reactivity in light-induced electron and energy transfer reactions with typical energy and electron acceptors and donors: methylviologen, tetrathiofulvalene, and 9,10-diphenylanthracene. This new class of complexes constitutes a promising starting point for the construction of linear, rod-like molecular arrays for photosensitized reactions and applications in artificial photosynthesis and molecular electronics.
Poly(ethylene imine)s (PEIs) are widely used in different applications, but most extensively investigated as non-viral vector systems. The high ability of cationic PEIs to complex and condense negatively charged DNA and RNA combined with their inherent proton sponge behavior accounts for the excellent efficiency in gene delivery. Further chemical modifications of the polymer expand the application potential, primarily aiming at increased transfection efficiency, cell selectivity and reduced cytotoxicity. Improvements in the synthesis of tailor-made PEIs in combination with new in-depth analytical techniques offer the possibility to produce highly purified polymers with defined structures. The contemporary strategies towards linear and branched poly(ethylene imine)s with modified surface characteristics, PEI-based copolymers as well as conjugates with bioactive molecules will be discussed. In this regard, the versatile branched PEIs have been successfully modified in a statistical manner, whereas the linear counterparts open avenues to design and synthesize well-defined architectures, in order to exploit their high potential in gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.