Abstract-Structured peer-to-peer overlay networks such as CAN, Chord, Pastry, and Tapestry can be used to implement Internet-scale application-level multicast. There are two general approaches to accomplishing this: tree building and flooding. This paper evaluates these two approaches using two different types of structured overlay: 1) overlays which use a form of generalized hypercube routing, e.g., Chord, Pastry and Tapestry, and 2) overlays which use a numerical distance metric to route through a Cartesian hyper-space, e.g., CAN. Pastry and CAN are chosen as the representatives of each type of overlay.To the best of our knowledge, this paper reports the first headto-head comparison of CAN-style versus Pastry-style overlay networks, using multicast communication workloads running on an identical simulation infrastructure. The two approaches to multicast are independent of overlay network choice, and we provide a comparison of flooding versus tree-based multicast on both overlays. Results show that the tree-based approach consistently outperforms the flooding approach. Finally, for treebased multicast, we show that Pastry provides better performance than CAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.